/****************************************************************************** ** Filename: normmatch.c ** Purpose: Simple matcher based on character normalization features. ** Author: Dan Johnson ** History: Wed Dec 19 16:18:06 1990, DSJ, Created. ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/ /*---------------------------------------------------------------------------- Include Files and Type Defines ----------------------------------------------------------------------------*/ #include "normmatch.h" #include #include #include "classify.h" #include "clusttool.h" #include "const.h" #include "efio.h" #include "emalloc.h" #include "globals.h" #include "helpers.h" #include "normfeat.h" #include "scanutils.h" #include "unicharset.h" #include "params.h" struct NORM_PROTOS { int NumParams; PARAM_DESC *ParamDesc; LIST* Protos; int NumProtos; }; /*---------------------------------------------------------------------------- Private Function Prototypes ----------------------------------------------------------------------------*/ double NormEvidenceOf(register double NormAdj); void PrintNormMatch(FILE *File, int NumParams, PROTOTYPE *Proto, FEATURE Feature); NORM_PROTOS *ReadNormProtos(FILE *File); /*---------------------------------------------------------------------------- Variables ----------------------------------------------------------------------------*/ /** control knobs used to control the normalization adjustment process */ double_VAR(classify_norm_adj_midpoint, 32.0, "Norm adjust midpoint ..."); double_VAR(classify_norm_adj_curl, 2.0, "Norm adjust curl ..."); /** Weight of width variance against height and vertical position. */ const double kWidthErrorWeighting = 0.125; /*---------------------------------------------------------------------------- Public Code ----------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ namespace tesseract { /** * This routine compares Features against each character * normalization proto for ClassId and returns the match * rating of the best match. * @param ClassId id of class to match against * @param feature character normalization feature * @param DebugMatch controls dump of debug info * * Globals: * #NormProtos character normalization prototypes * * @return Best match rating for Feature against protos of ClassId. * @note Exceptions: none * @note History: Wed Dec 19 16:56:12 1990, DSJ, Created. */ FLOAT32 Classify::ComputeNormMatch(CLASS_ID ClassId, const FEATURE_STRUCT& feature, BOOL8 DebugMatch) { LIST Protos; FLOAT32 BestMatch; FLOAT32 Match; FLOAT32 Delta; PROTOTYPE *Proto; int ProtoId; if (ClassId >= NormProtos->NumProtos) { ClassId = NO_CLASS; } /* handle requests for classification as noise */ if (ClassId == NO_CLASS) { /* kludge - clean up constants and make into control knobs later */ Match = (feature.Params[CharNormLength] * feature.Params[CharNormLength] * 500.0 + feature.Params[CharNormRx] * feature.Params[CharNormRx] * 8000.0 + feature.Params[CharNormRy] * feature.Params[CharNormRy] * 8000.0); return (1.0 - NormEvidenceOf (Match)); } BestMatch = MAX_FLOAT32; Protos = NormProtos->Protos[ClassId]; if (DebugMatch) { tprintf("\nChar norm for class %s\n", unicharset.id_to_unichar(ClassId)); } ProtoId = 0; iterate(Protos) { Proto = (PROTOTYPE *) first_node (Protos); Delta = feature.Params[CharNormY] - Proto->Mean[CharNormY]; Match = Delta * Delta * Proto->Weight.Elliptical[CharNormY]; if (DebugMatch) { tprintf("YMiddle: Proto=%g, Delta=%g, Var=%g, Dist=%g\n", Proto->Mean[CharNormY], Delta, Proto->Weight.Elliptical[CharNormY], Match); } Delta = feature.Params[CharNormRx] - Proto->Mean[CharNormRx]; Match += Delta * Delta * Proto->Weight.Elliptical[CharNormRx]; if (DebugMatch) { tprintf("Height: Proto=%g, Delta=%g, Var=%g, Dist=%g\n", Proto->Mean[CharNormRx], Delta, Proto->Weight.Elliptical[CharNormRx], Match); } // Ry is width! See intfx.cpp. Delta = feature.Params[CharNormRy] - Proto->Mean[CharNormRy]; if (DebugMatch) { tprintf("Width: Proto=%g, Delta=%g, Var=%g\n", Proto->Mean[CharNormRy], Delta, Proto->Weight.Elliptical[CharNormRy]); } Delta = Delta * Delta * Proto->Weight.Elliptical[CharNormRy]; Delta *= kWidthErrorWeighting; Match += Delta; if (DebugMatch) { tprintf("Total Dist=%g, scaled=%g, sigmoid=%g, penalty=%g\n", Match, Match / classify_norm_adj_midpoint, NormEvidenceOf(Match), 256 * (1 - NormEvidenceOf(Match))); } if (Match < BestMatch) BestMatch = Match; ProtoId++; } return 1.0 - NormEvidenceOf(BestMatch); } /* ComputeNormMatch */ void Classify::FreeNormProtos() { if (NormProtos != NULL) { for (int i = 0; i < NormProtos->NumProtos; i++) FreeProtoList(&NormProtos->Protos[i]); Efree(NormProtos->Protos); Efree(NormProtos->ParamDesc); Efree(NormProtos); NormProtos = NULL; } } } // namespace tesseract /*---------------------------------------------------------------------------- Private Code ----------------------------------------------------------------------------*/ /** * @name NormEvidenceOf * * Return the new type of evidence number corresponding to this * normalization adjustment. The equation that represents the transform is: * 1 / (1 + (NormAdj / midpoint) ^ curl) */ double NormEvidenceOf(register double NormAdj) { NormAdj /= classify_norm_adj_midpoint; if (classify_norm_adj_curl == 3) NormAdj = NormAdj * NormAdj * NormAdj; else if (classify_norm_adj_curl == 2) NormAdj = NormAdj * NormAdj; else NormAdj = pow (NormAdj, classify_norm_adj_curl); return (1.0 / (1.0 + NormAdj)); } /*---------------------------------------------------------------------------*/ /** * This routine dumps out detailed normalization match info. * @param File open text file to dump match debug info to * @param NumParams # of parameters in proto and feature * @param Proto[] array of prototype parameters * @param Feature[] array of feature parameters * Globals: none * @return none * @note Exceptions: none * @note History: Wed Jan 2 09:49:35 1991, DSJ, Created. */ void PrintNormMatch(FILE *File, int NumParams, PROTOTYPE *Proto, FEATURE Feature) { int i; FLOAT32 ParamMatch; FLOAT32 TotalMatch; for (i = 0, TotalMatch = 0.0; i < NumParams; i++) { ParamMatch = (Feature->Params[i] - Mean(Proto, i)) / StandardDeviation(Proto, i); fprintf (File, " %6.1f", ParamMatch); if (i == CharNormY || i == CharNormRx) TotalMatch += ParamMatch * ParamMatch; } fprintf (File, " --> %6.1f (%4.2f)\n", TotalMatch, NormEvidenceOf (TotalMatch)); } /* PrintNormMatch */ /*---------------------------------------------------------------------------*/ namespace tesseract { /** * This routine allocates a new data structure to hold * a set of character normalization protos. It then fills in * the data structure by reading from the specified File. * @param File open text file to read normalization protos from * @param end_offset * Globals: none * @return Character normalization protos. * @note Exceptions: none * @note History: Wed Dec 19 16:38:49 1990, DSJ, Created. */ NORM_PROTOS *Classify::ReadNormProtos(TFile *fp) { NORM_PROTOS *NormProtos; int i; char unichar[2 * UNICHAR_LEN + 1]; UNICHAR_ID unichar_id; LIST Protos; int NumProtos; /* allocate and initialization data structure */ NormProtos = (NORM_PROTOS *) Emalloc (sizeof (NORM_PROTOS)); NormProtos->NumProtos = unicharset.size(); NormProtos->Protos = (LIST *) Emalloc (NormProtos->NumProtos * sizeof(LIST)); for (i = 0; i < NormProtos->NumProtos; i++) NormProtos->Protos[i] = NIL_LIST; /* read file header and save in data structure */ NormProtos->NumParams = ReadSampleSize(fp); NormProtos->ParamDesc = ReadParamDesc(fp, NormProtos->NumParams); /* read protos for each class into a separate list */ const int kMaxLineSize = 100; char line[kMaxLineSize]; while (fp->FGets(line, kMaxLineSize) != nullptr) { if (sscanf(line, "%s %d", unichar, &NumProtos) != 2) continue; if (unicharset.contains_unichar(unichar)) { unichar_id = unicharset.unichar_to_id(unichar); Protos = NormProtos->Protos[unichar_id]; for (i = 0; i < NumProtos; i++) Protos = push_last(Protos, ReadPrototype(fp, NormProtos->NumParams)); NormProtos->Protos[unichar_id] = Protos; } else { tprintf("Error: unichar %s in normproto file is not in unichar set.\n", unichar); for (i = 0; i < NumProtos; i++) FreePrototype(ReadPrototype(fp, NormProtos->NumParams)); } } return (NormProtos); } /* ReadNormProtos */ } // namespace tesseract