/////////////////////////////////////////////////////////////////////// // File: matrix_test.cc // Author: rays@google.com (Ray Smith) // // Copyright 2016 Google Inc. All Rights Reserved. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "matrix.h" #include "genericvector.h" #include "include_gunit.h" namespace { class MatrixTest : public ::testing::Test { protected: // Fills src_ with data so it can pretend to be a tensor thus: // dims_=[5, 4, 3, 2] // array_=[0, 1, 2, ....119] // tensor=[[[[0, 1][2, 3][4, 5]] // [[6, 7][8, 9][10, 11]] // [[12, 13][14, 15][16, 17]] // [[18, 19][20, 21][22, 23]]] // [[[24, 25]... MatrixTest() { src_.Resize(1, kInputSize_, 0); for (int i = 0; i < kInputSize_; ++i) { src_.put(0, i, i); } for (int i = 0; i < kNumDims_; ++i) dims_[i] = 5 - i; } // Number of dimensions in src_. static const int kNumDims_ = 4; // Number of elements in src_. static const int kInputSize_ = 120; // Size of each dimension in src_; int dims_[kNumDims_]; // Input array filled with [0,kInputSize). GENERIC_2D_ARRAY src_; }; // Tests that the RotatingTranspose function does the right thing for various // transformations. // dims=[5, 4, 3, 2]->[5, 2, 4, 3] TEST_F(MatrixTest, RotatingTranspose_3_1) { GENERIC_2D_ARRAY m; src_.RotatingTranspose(dims_, kNumDims_, 3, 1, &m); m.ResizeNoInit(kInputSize_ / 3, 3); // Verify that the result is: // output tensor=[[[[0, 2, 4][6, 8, 10][12, 14, 16][18, 20, 22]] // [[1, 3, 5][7, 9, 11][13, 15, 17][19, 21, 23]]] // [[[24, 26, 28]... EXPECT_EQ(0, m(0, 0)); EXPECT_EQ(2, m(0, 1)); EXPECT_EQ(4, m(0, 2)); EXPECT_EQ(6, m(1, 0)); EXPECT_EQ(1, m(4, 0)); EXPECT_EQ(24, m(8, 0)); EXPECT_EQ(26, m(8, 1)); EXPECT_EQ(25, m(12, 0)); } // dims=[5, 4, 3, 2]->[3, 5, 4, 2] TEST_F(MatrixTest, RotatingTranspose_2_0) { GENERIC_2D_ARRAY m; src_.RotatingTranspose(dims_, kNumDims_, 2, 0, &m); m.ResizeNoInit(kInputSize_ / 2, 2); // Verify that the result is: // output tensor=[[[[0, 1][6, 7][12, 13][18, 19]] // [[24, 25][30, 31][36, 37][42, 43]] // [[48, 49][54, 55][60, 61][66, 67]] // [[72, 73][78, 79][84, 85][90, 91]] // [[96, 97][102, 103][108, 109][114, 115]]] // [[[2,3]... EXPECT_EQ(0, m(0, 0)); EXPECT_EQ(1, m(0, 1)); EXPECT_EQ(6, m(1, 0)); EXPECT_EQ(7, m(1, 1)); EXPECT_EQ(24, m(4, 0)); EXPECT_EQ(25, m(4, 1)); EXPECT_EQ(30, m(5, 0)); EXPECT_EQ(2, m(20, 0)); } // dims=[5, 4, 3, 2]->[5, 3, 2, 4] TEST_F(MatrixTest, RotatingTranspose_1_3) { GENERIC_2D_ARRAY m; src_.RotatingTranspose(dims_, kNumDims_, 1, 3, &m); m.ResizeNoInit(kInputSize_ / 4, 4); // Verify that the result is: // output tensor=[[[[0, 6, 12, 18][1, 7, 13, 19]] // [[2, 8, 14, 20][3, 9, 15, 21]] // [[4, 10, 16, 22][5, 11, 17, 23]]] // [[[24, 30, 36, 42]... EXPECT_EQ(0, m(0, 0)); EXPECT_EQ(6, m(0, 1)); EXPECT_EQ(1, m(1, 0)); EXPECT_EQ(2, m(2, 0)); EXPECT_EQ(3, m(3, 0)); EXPECT_EQ(4, m(4, 0)); EXPECT_EQ(5, m(5, 0)); EXPECT_EQ(24, m(6, 0)); EXPECT_EQ(30, m(6, 1)); } // dims=[5, 4, 3, 2]->[4, 3, 5, 2] TEST_F(MatrixTest, RotatingTranspose_0_2) { GENERIC_2D_ARRAY m; src_.RotatingTranspose(dims_, kNumDims_, 0, 2, &m); m.ResizeNoInit(kInputSize_ / 2, 2); // Verify that the result is: // output tensor=[[[[0, 1][24, 25][48, 49][72, 73][96, 97]] // [[2, 3][26, 27][50, 51][74, 75][98, 99]] // [[4, 5][28, 29][52, 53][76, 77][100, 101]]] // [[[6, 7]... EXPECT_EQ(0, m(0, 0)); EXPECT_EQ(1, m(0, 1)); EXPECT_EQ(24, m(1, 0)); EXPECT_EQ(25, m(1, 1)); EXPECT_EQ(96, m(4, 0)); EXPECT_EQ(97, m(4, 1)); EXPECT_EQ(2, m(5, 0)); EXPECT_EQ(6, m(15, 0)); } } // namespace