/////////////////////////////////////////////////////////////////////// // File: intsimdmatrix.cpp // Description: Base class for 8-bit int SIMD matrix multipliers. // Author: Ray Smith // Created: Tue Aug 15 08:01:32 PST 2017 // // (C) Copyright 2017, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "intsimdmatrix.h" #include "intsimdmatrixavx2.h" #include "intsimdmatrixsse.h" #include "simddetect.h" namespace tesseract { // Factory makes and returns an IntSimdMatrix (sub)class of the best // available type for the current architecture. /* static */ IntSimdMatrix* IntSimdMatrix::GetFastestMultiplier() { IntSimdMatrix* multiplier = nullptr; if (SIMDDetect::IsAVX2Available()) { multiplier = new IntSimdMatrixAVX2(); } else if (SIMDDetect::IsSSEAvailable()) { multiplier = new IntSimdMatrixSSE(); } else { // Default c++ implementation. multiplier = new IntSimdMatrix(); } return multiplier; } // Computes a reshaped copy of the weight matrix w. If there are no // partial_funcs_, it does nothing. void IntSimdMatrix::Init(const GENERIC_2D_ARRAY& w) { if (partial_funcs_.empty()) return; int num_out = w.dim1(); int num_in = w.dim2() - 1; // The rounded-up sizes of the reshaped weight matrix, excluding biases. int rounded_num_in = Roundup(num_in, num_inputs_per_group_); int rounded_num_out = RoundOutputs(num_out); // Add the bias and compute the required size. shaped_w_.resize((rounded_num_in + 1) * rounded_num_out, 0); int shaped_index = 0; int output = 0; // Each number of registers needs a different format! Iterates over the // different numbers of registers (each a power of 2). for (int num_registers = max_output_registers_; num_registers >= 1; num_registers /= 2) { // The number of outputs that we will generate with this many registers. int num_outputs_per_register_set = num_registers * num_outputs_per_register_; // Use the max number of registers until we have to go fewer. while (output + num_outputs_per_register_set <= rounded_num_out) { // Accumulating outputs in registers saves iterating over the inputs, so // we only have to do it once per output register set. for (int input = 0; input < num_in; input += num_inputs_per_group_) { // Iterate over the number of outputs in a register set. for (int j = 0; j < num_outputs_per_register_set; ++j) { // Inner-most loop corresponds to the number of inputs in an input // group. for (int i = 0; i < num_inputs_per_group_; ++i) { int8_t weight = 0; if (output + j < num_out && input + i < num_in) weight = w(output + j, input + i); shaped_w_[shaped_index++] = weight; } } } // Append the bias weights for the register set. for (int j = 0; j < num_outputs_per_register_set; ++j) { int8_t weight = 0; if (output + j < num_out) weight = w(output + j, num_in); shaped_w_[shaped_index++] = weight; } output += num_outputs_per_register_set; } } } // Computes matrix.vector v = Wu. // u is of size W.dim2() - 1 and the output v is of size W.dim1(). // u is imagined to have an extra element at the end with value 1, to // implement the bias, but it doesn't actually have it. void IntSimdMatrix::MatrixDotVector(const GENERIC_2D_ARRAY& w, const GenericVector& scales, const int8_t* u, double* v) const { int num_out = w.dim1(); int num_in = w.dim2() - 1; if (partial_funcs_.empty()) { // Base implementation. for (int i = 0; i < num_out; ++i) { const int8_t* wi = w[i]; int total = 0; for (int j = 0; j < num_in; ++j) total += wi[j] * u[j]; // Add in the bias and correct for integer values. v[i] = (static_cast(total) / MAX_INT8 + wi[num_in]) * scales[i]; } } else { const int8_t* w_data = shaped_w_.data(); const double* scales_data = &scales[0]; // Each call to a partial_func_ produces group_size outputs, except the // last one, which can produce less. int group_size = num_outputs_per_register_ * max_output_registers_; int rounded_num_in = Roundup(num_in, num_inputs_per_group_); int rounded_num_out = RoundOutputs(num_out); int output = 0; for (auto fn : partial_funcs_) { // The amount of w_data consumed by each call to fn. int w_step = (rounded_num_in + 1) * group_size; // Run with this group size, until it would produce too much output, then // switch to a smaller size. for (; output + group_size <= rounded_num_out; output += group_size) { (*fn)(w_data, scales_data, u, rounded_num_in, num_out - output, v); w_data += w_step; scales_data += group_size; v += group_size; } group_size /= 2; } } } } // namespace tesseract