/////////////////////////////////////////////////////////////////////// // File: thresholder.cpp // Description: Base API for thresolding images in tesseract. // Author: Ray Smith // Created: Mon May 12 11:28:15 PDT 2008 // // (C) Copyright 2008, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "allheaders.h" #include "thresholder.h" #include #include "otsuthr.h" #include "openclwrapper.h" namespace tesseract { ImageThresholder::ImageThresholder() : pix_(NULL), image_width_(0), image_height_(0), pix_channels_(0), pix_wpl_(0), scale_(1), yres_(300), estimated_res_(300) { SetRectangle(0, 0, 0, 0); } ImageThresholder::~ImageThresholder() { Clear(); } // Destroy the Pix if there is one, freeing memory. void ImageThresholder::Clear() { pixDestroy(&pix_); } // Return true if no image has been set. bool ImageThresholder::IsEmpty() const { return pix_ == NULL; } // SetImage makes a copy of all the image data, so it may be deleted // immediately after this call. // Greyscale of 8 and color of 24 or 32 bits per pixel may be given. // Palette color images will not work properly and must be converted to // 24 bit. // Binary images of 1 bit per pixel may also be given but they must be // byte packed with the MSB of the first byte being the first pixel, and a // one pixel is WHITE. For binary images set bytes_per_pixel=0. void ImageThresholder::SetImage(const unsigned char* imagedata, int width, int height, int bytes_per_pixel, int bytes_per_line) { int bpp = bytes_per_pixel * 8; if (bpp == 0) bpp = 1; Pix* pix = pixCreate(width, height, bpp == 24 ? 32 : bpp); l_uint32* data = pixGetData(pix); int wpl = pixGetWpl(pix); switch (bpp) { case 1: for (int y = 0; y < height; ++y, data += wpl, imagedata += bytes_per_line) { for (int x = 0; x < width; ++x) { if (imagedata[x / 8] & (0x80 >> (x % 8))) CLEAR_DATA_BIT(data, x); else SET_DATA_BIT(data, x); } } break; case 8: // Greyscale just copies the bytes in the right order. for (int y = 0; y < height; ++y, data += wpl, imagedata += bytes_per_line) { for (int x = 0; x < width; ++x) SET_DATA_BYTE(data, x, imagedata[x]); } break; case 24: // Put the colors in the correct places in the line buffer. for (int y = 0; y < height; ++y, imagedata += bytes_per_line) { for (int x = 0; x < width; ++x, ++data) { SET_DATA_BYTE(data, COLOR_RED, imagedata[3 * x]); SET_DATA_BYTE(data, COLOR_GREEN, imagedata[3 * x + 1]); SET_DATA_BYTE(data, COLOR_BLUE, imagedata[3 * x + 2]); } } break; case 32: // Maintain byte order consistency across different endianness. for (int y = 0; y < height; ++y, imagedata += bytes_per_line, data += wpl) { for (int x = 0; x < width; ++x) { data[x] = (imagedata[x * 4] << 24) | (imagedata[x * 4 + 1] << 16) | (imagedata[x * 4 + 2] << 8) | imagedata[x * 4 + 3]; } } break; default: tprintf("Cannot convert RAW image to Pix with bpp = %d\n", bpp); } pixSetYRes(pix, 300); SetImage(pix); pixDestroy(&pix); } // Store the coordinates of the rectangle to process for later use. // Doesn't actually do any thresholding. void ImageThresholder::SetRectangle(int left, int top, int width, int height) { rect_left_ = left; rect_top_ = top; rect_width_ = width; rect_height_ = height; } // Get enough parameters to be able to rebuild bounding boxes in the // original image (not just within the rectangle). // Left and top are enough with top-down coordinates, but // the height of the rectangle and the image are needed for bottom-up. void ImageThresholder::GetImageSizes(int* left, int* top, int* width, int* height, int* imagewidth, int* imageheight) { *left = rect_left_; *top = rect_top_; *width = rect_width_; *height = rect_height_; *imagewidth = image_width_; *imageheight = image_height_; } // Pix vs raw, which to use? Pix is the preferred input for efficiency, // since raw buffers are copied. // SetImage for Pix clones its input, so the source pix may be pixDestroyed // immediately after, but may not go away until after the Thresholder has // finished with it. void ImageThresholder::SetImage(const Pix* pix) { if (pix_ != NULL) pixDestroy(&pix_); Pix* src = const_cast(pix); int depth; pixGetDimensions(src, &image_width_, &image_height_, &depth); // Convert the image as necessary so it is one of binary, plain RGB, or // 8 bit with no colormap. Guarantee that we always end up with our own copy, // not just a clone of the input. if (pixGetColormap(src)) { Pix* tmp = pixRemoveColormap(src, REMOVE_CMAP_BASED_ON_SRC); depth = pixGetDepth(tmp); if (depth > 1 && depth < 8) { pix_ = pixConvertTo8(tmp, false); pixDestroy(&tmp); } else { pix_ = tmp; } } else if (depth > 1 && depth < 8) { pix_ = pixConvertTo8(src, false); } else { pix_ = pixCopy(NULL, src); } depth = pixGetDepth(pix_); pix_channels_ = depth / 8; pix_wpl_ = pixGetWpl(pix_); scale_ = 1; estimated_res_ = yres_ = pixGetYRes(pix_); Init(); } // Threshold the source image as efficiently as possible to the output Pix. // Creates a Pix and sets pix to point to the resulting pointer. // Caller must use pixDestroy to free the created Pix. /// Returns false on error. bool ImageThresholder::ThresholdToPix(PageSegMode pageseg_mode, Pix** pix) { if (image_width_ > MAX_INT16 || image_height_ > MAX_INT16) { tprintf("Image too large: (%d, %d)\n", image_width_, image_height_); return false; } if (pix_channels_ == 0) { // We have a binary image, but it still has to be copied, as this API // allows the caller to modify the output. Pix* original = GetPixRect(); *pix = pixCopy(nullptr, original); pixDestroy(&original); } else { OtsuThresholdRectToPix(pix_, pix); } return true; } // Gets a pix that contains an 8 bit threshold value at each pixel. The // returned pix may be an integer reduction of the binary image such that // the scale factor may be inferred from the ratio of the sizes, even down // to the extreme of a 1x1 pixel thresholds image. // Ideally the 8 bit threshold should be the exact threshold used to generate // the binary image in ThresholdToPix, but this is not a hard constraint. // Returns NULL if the input is binary. PixDestroy after use. Pix* ImageThresholder::GetPixRectThresholds() { if (IsBinary()) return NULL; Pix* pix_grey = GetPixRectGrey(); int width = pixGetWidth(pix_grey); int height = pixGetHeight(pix_grey); int* thresholds; int* hi_values; OtsuThreshold(pix_grey, 0, 0, width, height, &thresholds, &hi_values); pixDestroy(&pix_grey); Pix* pix_thresholds = pixCreate(width, height, 8); int threshold = thresholds[0] > 0 ? thresholds[0] : 128; pixSetAllArbitrary(pix_thresholds, threshold); delete [] thresholds; delete [] hi_values; return pix_thresholds; } // Common initialization shared between SetImage methods. void ImageThresholder::Init() { SetRectangle(0, 0, image_width_, image_height_); } // Get a clone/copy of the source image rectangle. // The returned Pix must be pixDestroyed. // This function will be used in the future by the page layout analysis, and // the layout analysis that uses it will only be available with Leptonica, // so there is no raw equivalent. Pix* ImageThresholder::GetPixRect() { if (IsFullImage()) { // Just clone the whole thing. return pixClone(pix_); } else { // Crop to the given rectangle. Box* box = boxCreate(rect_left_, rect_top_, rect_width_, rect_height_); Pix* cropped = pixClipRectangle(pix_, box, NULL); boxDestroy(&box); return cropped; } } // Get a clone/copy of the source image rectangle, reduced to greyscale, // and at the same resolution as the output binary. // The returned Pix must be pixDestroyed. // Provided to the classifier to extract features from the greyscale image. Pix* ImageThresholder::GetPixRectGrey() { Pix* pix = GetPixRect(); // May have to be reduced to grey. int depth = pixGetDepth(pix); if (depth != 8) { Pix* result = depth < 8 ? pixConvertTo8(pix, false) : pixConvertRGBToLuminance(pix); pixDestroy(&pix); return result; } return pix; } // Otsu thresholds the rectangle, taking the rectangle from *this. void ImageThresholder::OtsuThresholdRectToPix(Pix* src_pix, Pix** out_pix) const { PERF_COUNT_START("OtsuThresholdRectToPix") int* thresholds; int* hi_values; int num_channels = OtsuThreshold(src_pix, rect_left_, rect_top_, rect_width_, rect_height_, &thresholds, &hi_values); // only use opencl if compiled w/ OpenCL and selected device is opencl #ifdef USE_OPENCL OpenclDevice od; if ((num_channels == 4 || num_channels == 1) && od.selectedDeviceIsOpenCL() && rect_top_ == 0 && rect_left_ == 0 ) { od.ThresholdRectToPixOCL((unsigned char*)pixGetData(src_pix), num_channels, pixGetWpl(src_pix) * 4, thresholds, hi_values, out_pix /*pix_OCL*/, rect_height_, rect_width_, rect_top_, rect_left_); } else { #endif ThresholdRectToPix(src_pix, num_channels, thresholds, hi_values, out_pix); #ifdef USE_OPENCL } #endif delete [] thresholds; delete [] hi_values; PERF_COUNT_END } /// Threshold the rectangle, taking everything except the src_pix /// from the class, using thresholds/hi_values to the output pix. /// NOTE that num_channels is the size of the thresholds and hi_values // arrays and also the bytes per pixel in src_pix. void ImageThresholder::ThresholdRectToPix(Pix* src_pix, int num_channels, const int* thresholds, const int* hi_values, Pix** pix) const { PERF_COUNT_START("ThresholdRectToPix") *pix = pixCreate(rect_width_, rect_height_, 1); uinT32* pixdata = pixGetData(*pix); int wpl = pixGetWpl(*pix); int src_wpl = pixGetWpl(src_pix); uinT32* srcdata = pixGetData(src_pix); for (int y = 0; y < rect_height_; ++y) { const uinT32* linedata = srcdata + (y + rect_top_) * src_wpl; uinT32* pixline = pixdata + y * wpl; for (int x = 0; x < rect_width_; ++x) { bool white_result = true; for (int ch = 0; ch < num_channels; ++ch) { int pixel = GET_DATA_BYTE(linedata, (x + rect_left_) * num_channels + ch); if (hi_values[ch] >= 0 && (pixel > thresholds[ch]) == (hi_values[ch] == 0)) { white_result = false; break; } } if (white_result) CLEAR_DATA_BIT(pixline, x); else SET_DATA_BIT(pixline, x); } } PERF_COUNT_END } } // namespace tesseract.