/////////////////////////////////////////////////////////////////////// // File: lstmtester.cpp // Description: Top-level line evaluation class for LSTM-based networks. // Author: Ray Smith // Created: Wed Nov 23 11:18:06 PST 2016 // // (C) Copyright 2016, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "lstmtester.h" #include "genericvector.h" namespace tesseract { LSTMTester::LSTMTester(inT64 max_memory) : test_data_(max_memory), total_pages_(0), async_running_(false) {} // Loads a set of lstmf files that were created using the lstm.train config to // tesseract into memory ready for testing. Returns false if nothing was // loaded. The arg is a filename of a file that lists the filenames. bool LSTMTester::LoadAllEvalData(const STRING& filenames_file) { GenericVector filenames; if (!LoadFileLinesToStrings(filenames_file, &filenames)) { tprintf("Failed to load list of eval filenames from %s\n", filenames_file.string()); return false; } return LoadAllEvalData(filenames); } // Loads a set of lstmf files that were created using the lstm.train config to // tesseract into memory ready for testing. Returns false if nothing was // loaded. bool LSTMTester::LoadAllEvalData(const GenericVector& filenames) { test_data_.Clear(); bool result = test_data_.LoadDocuments(filenames, CS_SEQUENTIAL, nullptr); total_pages_ = test_data_.TotalPages(); return result; } // Runs an evaluation asynchronously on the stored data and returns a string // describing the results of the previous test. STRING LSTMTester::RunEvalAsync(int iteration, const double* training_errors, const TessdataManager& model_mgr, int training_stage) { STRING result; if (total_pages_ == 0) { result.add_str_int("No test data at iteration", iteration); return result; } if (!LockIfNotRunning()) { result.add_str_int("Previous test incomplete, skipping test at iteration", iteration); return result; } // Save the args. STRING prev_result = test_result_; test_result_ = ""; if (training_errors != nullptr) { test_iteration_ = iteration; test_training_errors_ = training_errors; test_model_mgr_ = model_mgr; test_training_stage_ = training_stage; SVSync::StartThread(&LSTMTester::ThreadFunc, this); } else { UnlockRunning(); } return prev_result; } // Runs an evaluation synchronously on the stored data and returns a string // describing the results. STRING LSTMTester::RunEvalSync(int iteration, const double* training_errors, const TessdataManager& model_mgr, int training_stage, int verbosity) { LSTMTrainer trainer; trainer.InitCharSet(model_mgr); TFile fp; if (!model_mgr.GetComponent(TESSDATA_LSTM, &fp) || !trainer.DeSerialize(&model_mgr, &fp)) { return "Deserialize failed"; } int eval_iteration = 0; double char_error = 0.0; double word_error = 0.0; int error_count = 0; while (error_count < total_pages_) { const ImageData* trainingdata = test_data_.GetPageBySerial(eval_iteration); trainer.SetIteration(++eval_iteration); NetworkIO fwd_outputs, targets; Trainability result = trainer.PrepareForBackward(trainingdata, &fwd_outputs, &targets); if (result != UNENCODABLE) { char_error += trainer.NewSingleError(tesseract::ET_CHAR_ERROR); word_error += trainer.NewSingleError(tesseract::ET_WORD_RECERR); ++error_count; if (verbosity > 1 || (verbosity > 0 && result != PERFECT)) { tprintf("Truth:%s\n", trainingdata->transcription().string()); GenericVector ocr_labels; GenericVector xcoords; trainer.LabelsFromOutputs(fwd_outputs, &ocr_labels, &xcoords); STRING ocr_text = trainer.DecodeLabels(ocr_labels); tprintf("OCR :%s\n", ocr_text.string()); } } } char_error *= 100.0 / total_pages_; word_error *= 100.0 / total_pages_; STRING result; result.add_str_int("At iteration ", iteration); result.add_str_int(", stage ", training_stage); result.add_str_double(", Eval Char error rate=", char_error); result.add_str_double(", Word error rate=", word_error); return result; } // Static helper thread function for RunEvalAsync, with a specific signature // required by SVSync::StartThread. Actually a member function pretending to // be static, its arg is a this pointer that it will cast back to LSTMTester* // to call RunEvalSync using the stored args that RunEvalAsync saves in *this. // LockIfNotRunning must have returned true before calling ThreadFunc, and // it will call UnlockRunning to release the lock after RunEvalSync completes. /* static */ void* LSTMTester::ThreadFunc(void* lstmtester_void) { LSTMTester* lstmtester = static_cast(lstmtester_void); lstmtester->test_result_ = lstmtester->RunEvalSync( lstmtester->test_iteration_, lstmtester->test_training_errors_, lstmtester->test_model_mgr_, lstmtester->test_training_stage_, /*verbosity*/ 0); lstmtester->UnlockRunning(); return lstmtester_void; } // Returns true if there is currently nothing running, and takes the lock // if there is nothing running. bool LSTMTester::LockIfNotRunning() { SVAutoLock lock(&running_mutex_); if (async_running_) return false; async_running_ = true; return true; } // Releases the running lock. void LSTMTester::UnlockRunning() { SVAutoLock lock(&running_mutex_); async_running_ = false; } } // namespace tesseract