/********************************************************************** * File: points.cpp (Formerly coords.c) * Description: Member functions for coordinate classes. * Author: Ray Smith * Created: Fri Mar 15 08:58:17 GMT 1991 * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #ifdef _MSC_VER #define _USE_MATH_DEFINES #endif // _MSC_VER #include #include "helpers.h" #include "ndminx.h" #include "serialis.h" #include "points.h" ELISTIZE (ICOORDELT) //turn to list bool FCOORD::normalise() { //Convert to unit vec float len = length (); if (len < 0.0000000001) { return false; } xcoord /= len; ycoord /= len; return true; } // Set from the given x,y, shrinking the vector to fit if needed. void ICOORD::set_with_shrink(int x, int y) { // Fit the vector into an ICOORD, which is 16 bit. int factor = 1; int max_extent = MAX(abs(x), abs(y)); if (max_extent > MAX_INT16) factor = max_extent / MAX_INT16 + 1; xcoord = x / factor; ycoord = y / factor; } // The fortran/basic sgn function returns -1, 0, 1 if x < 0, x == 0, x > 0 // respectively. static int sign(int x) { if (x < 0) return -1; else return x > 0 ? 1 : 0; } // Writes to the given file. Returns false in case of error. bool ICOORD::Serialize(FILE* fp) const { if (fwrite(&xcoord, sizeof(xcoord), 1, fp) != 1) return false; if (fwrite(&ycoord, sizeof(ycoord), 1, fp) != 1) return false; return true; } // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool ICOORD::DeSerialize(bool swap, FILE* fp) { if (fread(&xcoord, sizeof(xcoord), 1, fp) != 1) return false; if (fread(&ycoord, sizeof(ycoord), 1, fp) != 1) return false; if (swap) { ReverseN(&xcoord, sizeof(xcoord)); ReverseN(&ycoord, sizeof(ycoord)); } return true; } // Setup for iterating over the pixels in a vector by the well-known // Bresenham rendering algorithm. // Starting with major/2 in the accumulator, on each step add major_step, // and then add minor to the accumulator. When the accumulator >= major // subtract major and step a minor step. void ICOORD::setup_render(ICOORD* major_step, ICOORD* minor_step, int* major, int* minor) const { int abs_x = abs(xcoord); int abs_y = abs(ycoord); if (abs_x >= abs_y) { // X-direction is major. major_step->xcoord = sign(xcoord); major_step->ycoord = 0; minor_step->xcoord = 0; minor_step->ycoord = sign(ycoord); *major = abs_x; *minor = abs_y; } else { // Y-direction is major. major_step->xcoord = 0; major_step->ycoord = sign(ycoord); minor_step->xcoord = sign(xcoord); minor_step->ycoord = 0; *major = abs_y; *minor = abs_x; } } // Returns the standard feature direction corresponding to this. // See binary_angle_plus_pi below for a description of the direction. uinT8 FCOORD::to_direction() const { return binary_angle_plus_pi(angle()); } // Sets this with a unit vector in the given standard feature direction. void FCOORD::from_direction(uinT8 direction) { double radians = angle_from_direction(direction); xcoord = cos(radians); ycoord = sin(radians); } // Converts an angle in radians (from ICOORD::angle or FCOORD::angle) to a // standard feature direction as an unsigned angle in 256ths of a circle // measured anticlockwise from (-1, 0). uinT8 FCOORD::binary_angle_plus_pi(double radians) { return Modulo(IntCastRounded((radians + M_PI) * 128.0 / M_PI), 256); } // Inverse of binary_angle_plus_pi returns an angle in radians for the // given standard feature direction. double FCOORD::angle_from_direction(uinT8 direction) { return direction * M_PI / 128.0 - M_PI; } // Returns the point on the given line nearest to this, ie the point such // that the vector point->this is perpendicular to the line. // The line is defined as a line_point and a dir_vector for its direction. FCOORD FCOORD::nearest_pt_on_line(const FCOORD& line_point, const FCOORD& dir_vector) const { FCOORD point_vector(*this - line_point); // The dot product (%) is |dir_vector||point_vector|cos theta, so dividing by // the square of the length of dir_vector gives us the fraction of dir_vector // to add to line1 to get the appropriate point, so // result = line1 + lambda dir_vector. double lambda = point_vector % dir_vector / dir_vector.sqlength(); return line_point + (dir_vector * lambda); }