/////////////////////////////////////////////////////////////////////// // File: reconfig.cpp // Description: Network layer that reconfigures the scaling vs feature // depth. // Author: Ray Smith // Created: Wed Feb 26 15:42:25 PST 2014 // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "reconfig.h" #include "tprintf.h" namespace tesseract { Reconfig::Reconfig(const STRING& name, int ni, int x_scale, int y_scale) : Network(NT_RECONFIG, name, ni, ni * x_scale * y_scale), x_scale_(x_scale), y_scale_(y_scale) { } Reconfig::~Reconfig() { } // Returns the shape output from the network given an input shape (which may // be partially unknown ie zero). StaticShape Reconfig::OutputShape(const StaticShape& input_shape) const { StaticShape result = input_shape; result.set_height(result.height() / y_scale_); result.set_width(result.width() / x_scale_); if (type_ != NT_MAXPOOL) result.set_depth(result.depth() * y_scale_ * x_scale_); return result; } // Returns an integer reduction factor that the network applies to the // time sequence. Assumes that any 2-d is already eliminated. Used for // scaling bounding boxes of truth data. // WARNING: if GlobalMinimax is used to vary the scale, this will return // the last used scale factor. Call it before any forward, and it will return // the minimum scale factor of the paths through the GlobalMinimax. int Reconfig::XScaleFactor() const { return x_scale_; } // Writes to the given file. Returns false in case of error. bool Reconfig::Serialize(TFile* fp) const { if (!Network::Serialize(fp)) return false; if (fp->FWrite(&x_scale_, sizeof(x_scale_), 1) != 1) return false; if (fp->FWrite(&y_scale_, sizeof(y_scale_), 1) != 1) return false; return true; } // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool Reconfig::DeSerialize(bool swap, TFile* fp) { if (fp->FRead(&x_scale_, sizeof(x_scale_), 1) != 1) return false; if (fp->FRead(&y_scale_, sizeof(y_scale_), 1) != 1) return false; if (swap) { ReverseN(&x_scale_, sizeof(x_scale_)); ReverseN(&y_scale_, sizeof(y_scale_)); } no_ = ni_ * x_scale_ * y_scale_; return true; } // Runs forward propagation of activations on the input line. // See NetworkCpp for a detailed discussion of the arguments. void Reconfig::Forward(bool debug, const NetworkIO& input, const TransposedArray* input_transpose, NetworkScratch* scratch, NetworkIO* output) { output->ResizeScaled(input, x_scale_, y_scale_, no_); back_map_ = input.stride_map(); StrideMap::Index dest_index(output->stride_map()); do { int out_t = dest_index.t(); StrideMap::Index src_index(input.stride_map(), dest_index.index(FD_BATCH), dest_index.index(FD_HEIGHT) * y_scale_, dest_index.index(FD_WIDTH) * x_scale_); // Stack x_scale_ groups of y_scale_ inputs together. for (int x = 0; x < x_scale_; ++x) { for (int y = 0; y < y_scale_; ++y) { StrideMap::Index src_xy(src_index); if (src_xy.AddOffset(x, FD_WIDTH) && src_xy.AddOffset(y, FD_HEIGHT)) { output->CopyTimeStepGeneral(out_t, (x * y_scale_ + y) * ni_, ni_, input, src_xy.t(), 0); } } } } while (dest_index.Increment()); } // Runs backward propagation of errors on the deltas line. // See NetworkCpp for a detailed discussion of the arguments. bool Reconfig::Backward(bool debug, const NetworkIO& fwd_deltas, NetworkScratch* scratch, NetworkIO* back_deltas) { back_deltas->ResizeToMap(fwd_deltas.int_mode(), back_map_, ni_); StrideMap::Index src_index(fwd_deltas.stride_map()); do { int in_t = src_index.t(); StrideMap::Index dest_index(back_deltas->stride_map(), src_index.index(FD_BATCH), src_index.index(FD_HEIGHT) * y_scale_, src_index.index(FD_WIDTH) * x_scale_); // Unstack x_scale_ groups of y_scale_ inputs that are together. for (int x = 0; x < x_scale_; ++x) { for (int y = 0; y < y_scale_; ++y) { StrideMap::Index dest_xy(dest_index); if (dest_xy.AddOffset(x, FD_WIDTH) && dest_xy.AddOffset(y, FD_HEIGHT)) { back_deltas->CopyTimeStepGeneral(dest_xy.t(), 0, ni_, fwd_deltas, in_t, (x * y_scale_ + y) * ni_); } } } } while (src_index.Increment()); return needs_to_backprop_; } } // namespace tesseract.