// (C) Copyright 2017, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "intfeaturemap.h" #include "intfeaturespace.h" #include "include_gunit.h" // Random re-quantization to test that they don't have to be easy. // WARNING! Change these and change the expected_misses calculation below. const int kXBuckets = 16; const int kYBuckets = 24; const int kThetaBuckets = 13; namespace tesseract { class IntFeatureMapTest : public testing::Test { protected: void SetUp() { std::locale::global(std::locale("")); } public: // Expects that the given vector has contiguous integer values in the // range [start, end). void ExpectContiguous(const GenericVector& v, int start, int end) { for (int i = start; i < end; ++i) { EXPECT_EQ(i, v[i - start]); } } }; // Tests the IntFeatureMap and implicitly the IntFeatureSpace underneath. TEST_F(IntFeatureMapTest, Exhaustive) { #ifdef DISABLED_LEGACY_ENGINE // Skip test because IntFeatureSpace is missing. GTEST_SKIP(); #else IntFeatureSpace space; space.Init(kXBuckets, kYBuckets, kThetaBuckets); IntFeatureMap map; map.Init(space); int total_size = kIntFeatureExtent * kIntFeatureExtent * kIntFeatureExtent; std::unique_ptr features( new INT_FEATURE_STRUCT[total_size]); // Fill the features with every value. for (int y = 0; y < kIntFeatureExtent; ++y) { for (int x = 0; x < kIntFeatureExtent; ++x) { for (int theta = 0; theta < kIntFeatureExtent; ++theta) { int f_index = (y * kIntFeatureExtent + x) * kIntFeatureExtent + theta; features[f_index].X = x; features[f_index].Y = y; features[f_index].Theta = theta; } } } GenericVector index_features; map.IndexAndSortFeatures(features.get(), total_size, &index_features); EXPECT_EQ(total_size, index_features.size()); int total_buckets = kXBuckets * kYBuckets * kThetaBuckets; GenericVector map_features; int misses = map.MapIndexedFeatures(index_features, &map_features); EXPECT_EQ(0, misses); EXPECT_EQ(total_buckets, map_features.size()); ExpectContiguous(map_features, 0, total_buckets); EXPECT_EQ(total_buckets, map.compact_size()); EXPECT_EQ(total_buckets, map.sparse_size()); // Every offset should be within dx, dy, dtheta of the start point. int dx = kIntFeatureExtent / kXBuckets + 1; int dy = kIntFeatureExtent / kYBuckets + 1; int dtheta = kIntFeatureExtent / kThetaBuckets + 1; int bad_offsets = 0; for (int index = 0; index < total_buckets; ++index) { for (int dir = -tesseract::kNumOffsetMaps; dir <= tesseract::kNumOffsetMaps; ++dir) { int offset_index = map.OffsetFeature(index, dir); if (dir == 0) { EXPECT_EQ(index, offset_index); } else if (offset_index >= 0) { INT_FEATURE_STRUCT f = map.InverseIndexFeature(index); INT_FEATURE_STRUCT f2 = map.InverseIndexFeature(offset_index); EXPECT_TRUE(f.X != f2.X || f.Y != f2.Y || f.Theta != f2.Theta); EXPECT_LE(abs(f.X - f2.X), dx); EXPECT_LE(abs(f.Y - f2.Y), dy); int theta_delta = abs(f.Theta - f2.Theta); if (theta_delta > kIntFeatureExtent / 2) theta_delta = kIntFeatureExtent - theta_delta; EXPECT_LE(theta_delta, dtheta); } else { ++bad_offsets; INT_FEATURE_STRUCT f = map.InverseIndexFeature(index); } } } EXPECT_LE(bad_offsets, (kXBuckets + kYBuckets) * kThetaBuckets); // To test the mapping further, delete the 1st and last map feature, and // test again. map.DeleteMapFeature(0); map.DeleteMapFeature(total_buckets - 1); map.FinalizeMapping(nullptr); map.IndexAndSortFeatures(features.get(), total_size, &index_features); // Has no effect on index features. EXPECT_EQ(total_size, index_features.size()); misses = map.MapIndexedFeatures(index_features, &map_features); int expected_misses = (kIntFeatureExtent / kXBuckets) * (kIntFeatureExtent / kYBuckets) * (kIntFeatureExtent / kThetaBuckets + 1); expected_misses += (kIntFeatureExtent / kXBuckets) * (kIntFeatureExtent / kYBuckets + 1) * (kIntFeatureExtent / kThetaBuckets); EXPECT_EQ(expected_misses, misses); EXPECT_EQ(total_buckets - 2, map_features.size()); ExpectContiguous(map_features, 0, total_buckets - 2); EXPECT_EQ(total_buckets - 2, map.compact_size()); EXPECT_EQ(total_buckets, map.sparse_size()); #endif } } // namespace.