tesseract/dict/stopper.cpp
Ray Smith 84920b92b3 Font and classifier output structure cleanup.
Font recognition was poor, due to forcing a 1st and 2nd choice at
a character level, when the total score for the correct font is often
correct at the word level, so allowed the propagation of a full set
of fonts and scores to the word recognizer, which can now decide word
level fonts using the scores instead of simple votes.

Change precipitated a cleanup of output data structures for classifier
results, eliminating ScoredClass and INT_RESULT_STRUCT, with a few
extra elements going in UnicharRating, and using that wherever possible.
That added the extra complexity of 1-rating due to a flip between 0 is
good and 0 is bad for the internal classifier scores before they are
converted to rating and certainty.
2015-05-12 17:24:34 -07:00

522 lines
20 KiB
C++

/******************************************************************************
** Filename: stopper.c
** Purpose: Stopping criteria for word classifier.
** Author: Dan Johnson
** History: Mon Apr 29 14:56:49 1991, DSJ, Created.
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include "stopper.h"
#include "ambigs.h"
#include "ccutil.h"
#include "const.h"
#include "danerror.h"
#include "dict.h"
#include "efio.h"
#include "helpers.h"
#include "matchdefs.h"
#include "pageres.h"
#include "params.h"
#include "ratngs.h"
#include "scanutils.h"
#include "unichar.h"
#ifdef _MSC_VER
#pragma warning(disable:4244) // Conversion warnings
#pragma warning(disable:4800) // int/bool warnings
#endif
using tesseract::ScriptPos;
/**----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------**/
namespace tesseract {
bool Dict::AcceptableChoice(const WERD_CHOICE& best_choice,
XHeightConsistencyEnum xheight_consistency) {
float CertaintyThreshold = stopper_nondict_certainty_base;
int WordSize;
if (stopper_no_acceptable_choices) return false;
if (best_choice.length() == 0) return false;
bool no_dang_ambigs = !best_choice.dangerous_ambig_found();
bool is_valid_word = valid_word_permuter(best_choice.permuter(), false);
bool is_case_ok = case_ok(best_choice, getUnicharset());
if (stopper_debug_level >= 1) {
const char *xht = "UNKNOWN";
switch (xheight_consistency) {
case XH_GOOD: xht = "NORMAL"; break;
case XH_SUBNORMAL: xht = "SUBNORMAL"; break;
case XH_INCONSISTENT: xht = "INCONSISTENT"; break;
default: xht = "UNKNOWN";
}
tprintf("\nStopper: %s (word=%c, case=%c, xht_ok=%s=[%g,%g])\n",
best_choice.unichar_string().string(),
(is_valid_word ? 'y' : 'n'),
(is_case_ok ? 'y' : 'n'),
xht,
best_choice.min_x_height(),
best_choice.max_x_height());
}
// Do not accept invalid words in PASS1.
if (reject_offset_ <= 0.0f && !is_valid_word) return false;
if (is_valid_word && is_case_ok) {
WordSize = LengthOfShortestAlphaRun(best_choice);
WordSize -= stopper_smallword_size;
if (WordSize < 0)
WordSize = 0;
CertaintyThreshold += WordSize * stopper_certainty_per_char;
}
if (stopper_debug_level >= 1)
tprintf("Stopper: Rating = %4.1f, Certainty = %4.1f, Threshold = %4.1f\n",
best_choice.rating(), best_choice.certainty(), CertaintyThreshold);
if (no_dang_ambigs &&
best_choice.certainty() > CertaintyThreshold &&
xheight_consistency < XH_INCONSISTENT &&
UniformCertainties(best_choice)) {
return true;
} else {
if (stopper_debug_level >= 1) {
tprintf("AcceptableChoice() returned false"
" (no_dang_ambig:%d cert:%.4g thresh:%g uniform:%d)\n",
no_dang_ambigs, best_choice.certainty(),
CertaintyThreshold,
UniformCertainties(best_choice));
}
return false;
}
}
bool Dict::AcceptableResult(WERD_RES* word) {
if (word->best_choice == NULL) return false;
float CertaintyThreshold = stopper_nondict_certainty_base - reject_offset_;
int WordSize;
if (stopper_debug_level >= 1) {
tprintf("\nRejecter: %s (word=%c, case=%c, unambig=%c, multiple=%c)\n",
word->best_choice->debug_string().string(),
(valid_word(*word->best_choice) ? 'y' : 'n'),
(case_ok(*word->best_choice, getUnicharset()) ? 'y' : 'n'),
word->best_choice->dangerous_ambig_found() ? 'n' : 'y',
word->best_choices.singleton() ? 'n' : 'y');
}
if (word->best_choice->length() == 0 || !word->best_choices.singleton())
return false;
if (valid_word(*word->best_choice) &&
case_ok(*word->best_choice, getUnicharset())) {
WordSize = LengthOfShortestAlphaRun(*word->best_choice);
WordSize -= stopper_smallword_size;
if (WordSize < 0)
WordSize = 0;
CertaintyThreshold += WordSize * stopper_certainty_per_char;
}
if (stopper_debug_level >= 1)
tprintf("Rejecter: Certainty = %4.1f, Threshold = %4.1f ",
word->best_choice->certainty(), CertaintyThreshold);
if (word->best_choice->certainty() > CertaintyThreshold &&
!stopper_no_acceptable_choices) {
if (stopper_debug_level >= 1)
tprintf("ACCEPTED\n");
return true;
} else {
if (stopper_debug_level >= 1)
tprintf("REJECTED\n");
return false;
}
}
bool Dict::NoDangerousAmbig(WERD_CHOICE *best_choice,
DANGERR *fixpt,
bool fix_replaceable,
MATRIX *ratings) {
if (stopper_debug_level > 2) {
tprintf("\nRunning NoDangerousAmbig() for %s\n",
best_choice->debug_string().string());
}
// Construct BLOB_CHOICE_LIST_VECTOR with ambiguities
// for each unichar id in BestChoice.
BLOB_CHOICE_LIST_VECTOR ambig_blob_choices;
int i;
bool ambigs_found = false;
// For each position in best_choice:
// -- choose AMBIG_SPEC_LIST that corresponds to unichar_id at best_choice[i]
// -- initialize wrong_ngram with a single unichar_id at best_choice[i]
// -- look for ambiguities corresponding to wrong_ngram in the list while
// adding the following unichar_ids from best_choice to wrong_ngram
//
// Repeat the above procedure twice: first time look through
// ambigs to be replaced and replace all the ambiguities found;
// second time look through dangerous ambiguities and construct
// ambig_blob_choices with fake a blob choice for each ambiguity
// and pass them to dawg_permute_and_select() to search for
// ambiguous words in the dictionaries.
//
// Note that during the execution of the for loop (on the first pass)
// if replacements are made the length of best_choice might change.
for (int pass = 0; pass < (fix_replaceable ? 2 : 1); ++pass) {
bool replace = (fix_replaceable && pass == 0);
const UnicharAmbigsVector &table = replace ?
getUnicharAmbigs().replace_ambigs() : getUnicharAmbigs().dang_ambigs();
if (!replace) {
// Initialize ambig_blob_choices with lists containing a single
// unichar id for the correspoding position in best_choice.
// best_choice consisting from only the original letters will
// have a rating of 0.0.
for (i = 0; i < best_choice->length(); ++i) {
BLOB_CHOICE_LIST *lst = new BLOB_CHOICE_LIST();
BLOB_CHOICE_IT lst_it(lst);
// TODO(rays/antonova) Put real xheights and y shifts here.
lst_it.add_to_end(new BLOB_CHOICE(best_choice->unichar_id(i),
0.0, 0.0, -1, 0, 1, 0, BCC_AMBIG));
ambig_blob_choices.push_back(lst);
}
}
UNICHAR_ID wrong_ngram[MAX_AMBIG_SIZE + 1];
int wrong_ngram_index;
int next_index;
int blob_index = 0;
for (i = 0; i < best_choice->length(); blob_index += best_choice->state(i),
++i) {
UNICHAR_ID curr_unichar_id = best_choice->unichar_id(i);
if (stopper_debug_level > 2) {
tprintf("Looking for %s ngrams starting with %s:\n",
replace ? "replaceable" : "ambiguous",
getUnicharset().debug_str(curr_unichar_id).string());
}
int num_wrong_blobs = best_choice->state(i);
wrong_ngram_index = 0;
wrong_ngram[wrong_ngram_index] = curr_unichar_id;
if (curr_unichar_id == INVALID_UNICHAR_ID ||
curr_unichar_id >= table.size() ||
table[curr_unichar_id] == NULL) {
continue; // there is no ambig spec for this unichar id
}
AmbigSpec_IT spec_it(table[curr_unichar_id]);
for (spec_it.mark_cycle_pt(); !spec_it.cycled_list();) {
const AmbigSpec *ambig_spec = spec_it.data();
wrong_ngram[wrong_ngram_index+1] = INVALID_UNICHAR_ID;
int compare = UnicharIdArrayUtils::compare(wrong_ngram,
ambig_spec->wrong_ngram);
if (stopper_debug_level > 2) {
tprintf("candidate ngram: ");
UnicharIdArrayUtils::print(wrong_ngram, getUnicharset());
tprintf("current ngram from spec: ");
UnicharIdArrayUtils::print(ambig_spec->wrong_ngram, getUnicharset());
tprintf("comparison result: %d\n", compare);
}
if (compare == 0) {
// Record the place where we found an ambiguity.
if (fixpt != NULL) {
UNICHAR_ID leftmost_id = ambig_spec->correct_fragments[0];
fixpt->push_back(DANGERR_INFO(
blob_index, blob_index + num_wrong_blobs, replace,
getUnicharset().get_isngram(ambig_spec->correct_ngram_id),
leftmost_id));
if (stopper_debug_level > 1) {
tprintf("fixpt+=(%d %d %d %d %s)\n", blob_index,
blob_index + num_wrong_blobs, false,
getUnicharset().get_isngram(
ambig_spec->correct_ngram_id),
getUnicharset().id_to_unichar(leftmost_id));
}
}
if (replace) {
if (stopper_debug_level > 2) {
tprintf("replace ambiguity with %s : ",
getUnicharset().id_to_unichar(
ambig_spec->correct_ngram_id));
UnicharIdArrayUtils::print(
ambig_spec->correct_fragments, getUnicharset());
}
ReplaceAmbig(i, ambig_spec->wrong_ngram_size,
ambig_spec->correct_ngram_id,
best_choice, ratings);
} else if (i > 0 || ambig_spec->type != CASE_AMBIG) {
// We found dang ambig - update ambig_blob_choices.
if (stopper_debug_level > 2) {
tprintf("found ambiguity: ");
UnicharIdArrayUtils::print(
ambig_spec->correct_fragments, getUnicharset());
}
ambigs_found = true;
for (int tmp_index = 0; tmp_index <= wrong_ngram_index;
++tmp_index) {
// Add a blob choice for the corresponding fragment of the
// ambiguity. These fake blob choices are initialized with
// negative ratings (which are not possible for real blob
// choices), so that dawg_permute_and_select() considers any
// word not consisting of only the original letters a better
// choice and stops searching for alternatives once such a
// choice is found.
BLOB_CHOICE_IT bc_it(ambig_blob_choices[i+tmp_index]);
bc_it.add_to_end(new BLOB_CHOICE(
ambig_spec->correct_fragments[tmp_index], -1.0, 0.0,
-1, 0, 1, 0, BCC_AMBIG));
}
}
spec_it.forward();
} else if (compare == -1) {
if (wrong_ngram_index+1 < ambig_spec->wrong_ngram_size &&
((next_index = wrong_ngram_index+1+i) < best_choice->length())) {
// Add the next unichar id to wrong_ngram and keep looking for
// more ambigs starting with curr_unichar_id in AMBIG_SPEC_LIST.
wrong_ngram[++wrong_ngram_index] =
best_choice->unichar_id(next_index);
num_wrong_blobs += best_choice->state(next_index);
} else {
break; // no more matching ambigs in this AMBIG_SPEC_LIST
}
} else {
spec_it.forward();
}
} // end searching AmbigSpec_LIST
} // end searching best_choice
} // end searching replace and dangerous ambigs
// If any ambiguities were found permute the constructed ambig_blob_choices
// to see if an alternative dictionary word can be found.
if (ambigs_found) {
if (stopper_debug_level > 2) {
tprintf("\nResulting ambig_blob_choices:\n");
for (i = 0; i < ambig_blob_choices.length(); ++i) {
print_ratings_list("", ambig_blob_choices.get(i), getUnicharset());
tprintf("\n");
}
}
WERD_CHOICE *alt_word = dawg_permute_and_select(ambig_blob_choices, 0.0);
ambigs_found = (alt_word->rating() < 0.0);
if (ambigs_found) {
if (stopper_debug_level >= 1) {
tprintf ("Stopper: Possible ambiguous word = %s\n",
alt_word->debug_string().string());
}
if (fixpt != NULL) {
// Note: Currently character choices combined from fragments can only
// be generated by NoDangrousAmbigs(). This code should be updated if
// the capability to produce classifications combined from character
// fragments is added to other functions.
int orig_i = 0;
for (i = 0; i < alt_word->length(); ++i) {
const UNICHARSET &uchset = getUnicharset();
bool replacement_is_ngram =
uchset.get_isngram(alt_word->unichar_id(i));
UNICHAR_ID leftmost_id = alt_word->unichar_id(i);
if (replacement_is_ngram) {
// we have to extract the leftmost unichar from the ngram.
const char *str = uchset.id_to_unichar(leftmost_id);
int step = uchset.step(str);
if (step) leftmost_id = uchset.unichar_to_id(str, step);
}
int end_i = orig_i + alt_word->state(i);
if (alt_word->state(i) > 1 ||
(orig_i + 1 == end_i && replacement_is_ngram)) {
// Compute proper blob indices.
int blob_start = 0;
for (int j = 0; j < orig_i; ++j)
blob_start += best_choice->state(j);
int blob_end = blob_start;
for (int j = orig_i; j < end_i; ++j)
blob_end += best_choice->state(j);
fixpt->push_back(DANGERR_INFO(blob_start, blob_end, true,
replacement_is_ngram, leftmost_id));
if (stopper_debug_level > 1) {
tprintf("fixpt->dangerous+=(%d %d %d %d %s)\n", orig_i, end_i,
true, replacement_is_ngram,
uchset.id_to_unichar(leftmost_id));
}
}
orig_i += alt_word->state(i);
}
}
}
delete alt_word;
}
if (output_ambig_words_file_ != NULL) {
fprintf(output_ambig_words_file_, "\n");
}
ambig_blob_choices.delete_data_pointers();
return !ambigs_found;
}
void Dict::EndDangerousAmbigs() {}
void Dict::SettupStopperPass1() {
reject_offset_ = 0.0;
}
void Dict::SettupStopperPass2() {
reject_offset_ = stopper_phase2_certainty_rejection_offset;
}
void Dict::ReplaceAmbig(int wrong_ngram_begin_index, int wrong_ngram_size,
UNICHAR_ID correct_ngram_id, WERD_CHOICE *werd_choice,
MATRIX *ratings) {
int num_blobs_to_replace = 0;
int begin_blob_index = 0;
int i;
// Rating and certainty for the new BLOB_CHOICE are derived from the
// replaced choices.
float new_rating = 0.0f;
float new_certainty = 0.0f;
BLOB_CHOICE* old_choice = NULL;
for (i = 0; i < wrong_ngram_begin_index + wrong_ngram_size; ++i) {
if (i >= wrong_ngram_begin_index) {
int num_blobs = werd_choice->state(i);
int col = begin_blob_index + num_blobs_to_replace;
int row = col + num_blobs - 1;
BLOB_CHOICE_LIST* choices = ratings->get(col, row);
ASSERT_HOST(choices != NULL);
old_choice = FindMatchingChoice(werd_choice->unichar_id(i), choices);
ASSERT_HOST(old_choice != NULL);
new_rating += old_choice->rating();
new_certainty += old_choice->certainty();
num_blobs_to_replace += num_blobs;
} else {
begin_blob_index += werd_choice->state(i);
}
}
new_certainty /= wrong_ngram_size;
// If there is no entry in the ratings matrix, add it.
MATRIX_COORD coord(begin_blob_index,
begin_blob_index + num_blobs_to_replace - 1);
if (!coord.Valid(*ratings)) {
ratings->IncreaseBandSize(coord.row - coord.col + 1);
}
if (ratings->get(coord.col, coord.row) == NULL)
ratings->put(coord.col, coord.row, new BLOB_CHOICE_LIST);
BLOB_CHOICE_LIST* new_choices = ratings->get(coord.col, coord.row);
BLOB_CHOICE* choice = FindMatchingChoice(correct_ngram_id, new_choices);
if (choice != NULL) {
// Already there. Upgrade if new rating better.
if (new_rating < choice->rating())
choice->set_rating(new_rating);
if (new_certainty < choice->certainty())
choice->set_certainty(new_certainty);
// DO NOT SORT!! It will mess up the iterator in LanguageModel::UpdateState.
} else {
// Need a new choice with the correct_ngram_id.
choice = new BLOB_CHOICE(*old_choice);
choice->set_unichar_id(correct_ngram_id);
choice->set_rating(new_rating);
choice->set_certainty(new_certainty);
choice->set_classifier(BCC_AMBIG);
choice->set_matrix_cell(coord.col, coord.row);
BLOB_CHOICE_IT it (new_choices);
it.add_to_end(choice);
}
// Remove current unichar from werd_choice. On the last iteration
// set the correct replacement unichar instead of removing a unichar.
for (int replaced_count = 0; replaced_count < wrong_ngram_size;
++replaced_count) {
if (replaced_count + 1 == wrong_ngram_size) {
werd_choice->set_blob_choice(wrong_ngram_begin_index,
num_blobs_to_replace, choice);
} else {
werd_choice->remove_unichar_id(wrong_ngram_begin_index + 1);
}
}
if (stopper_debug_level >= 1) {
werd_choice->print("ReplaceAmbig() ");
tprintf("Modified blob_choices: ");
print_ratings_list("\n", new_choices, getUnicharset());
}
}
int Dict::LengthOfShortestAlphaRun(const WERD_CHOICE &WordChoice) {
int shortest = MAX_INT32;
int curr_len = 0;
for (int w = 0; w < WordChoice.length(); ++w) {
if (getUnicharset().get_isalpha(WordChoice.unichar_id(w))) {
curr_len++;
} else if (curr_len > 0) {
if (curr_len < shortest) shortest = curr_len;
curr_len = 0;
}
}
if (curr_len > 0 && curr_len < shortest) {
shortest = curr_len;
} else if (shortest == MAX_INT32) {
shortest = 0;
}
return shortest;
}
int Dict::UniformCertainties(const WERD_CHOICE& word) {
float Certainty;
float WorstCertainty = MAX_FLOAT32;
float CertaintyThreshold;
FLOAT64 TotalCertainty;
FLOAT64 TotalCertaintySquared;
FLOAT64 Variance;
FLOAT32 Mean, StdDev;
int word_length = word.length();
if (word_length < 3)
return true;
TotalCertainty = TotalCertaintySquared = 0.0;
for (int i = 0; i < word_length; ++i) {
Certainty = word.certainty(i);
TotalCertainty += Certainty;
TotalCertaintySquared += Certainty * Certainty;
if (Certainty < WorstCertainty)
WorstCertainty = Certainty;
}
// Subtract off worst certainty from statistics.
word_length--;
TotalCertainty -= WorstCertainty;
TotalCertaintySquared -= WorstCertainty * WorstCertainty;
Mean = TotalCertainty / word_length;
Variance = ((word_length * TotalCertaintySquared -
TotalCertainty * TotalCertainty) /
(word_length * (word_length - 1)));
if (Variance < 0.0)
Variance = 0.0;
StdDev = sqrt(Variance);
CertaintyThreshold = Mean - stopper_allowable_character_badness * StdDev;
if (CertaintyThreshold > stopper_nondict_certainty_base)
CertaintyThreshold = stopper_nondict_certainty_base;
if (word.certainty() < CertaintyThreshold) {
if (stopper_debug_level >= 1)
tprintf("Stopper: Non-uniform certainty = %4.1f"
" (m=%4.1f, s=%4.1f, t=%4.1f)\n",
word.certainty(), Mean, StdDev, CertaintyThreshold);
return false;
} else {
return true;
}
}
} // namespace tesseract