tesseract/lstm/parallel.cpp
Stefan Weil 6140be6a55 openmp: Fix build with clang++ and compilers without OpenMP support
Builds without support for OpenMP failed with the old code. Fix this:

* Add OPENMP_CXXFLAGS for ccmain.
* Replace unconditional -fopenmp by OPENMP_CXXFLAGS for lstm.
* Always use _OPENMP for conditional compilation.
* Remove OPENMP as there is already _OPENMP.
* Include omp.h conditionally.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2016-12-04 18:44:03 +01:00

180 lines
6.7 KiB
C++

/////////////////////////////////////////////////////////////////////////
// File: parallel.cpp
// Description: Runs networks in parallel on the same input.
// Author: Ray Smith
// Created: Thu May 02 08:06:06 PST 2013
//
// (C) Copyright 2013, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#include "parallel.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#include "functions.h" // For conditional undef of _OPENMP.
#include "networkscratch.h"
namespace tesseract {
// ni_ and no_ will be set by AddToStack.
Parallel::Parallel(const STRING& name, NetworkType type) : Plumbing(name) {
type_ = type;
}
Parallel::~Parallel() {
}
// Returns the shape output from the network given an input shape (which may
// be partially unknown ie zero).
StaticShape Parallel::OutputShape(const StaticShape& input_shape) const {
StaticShape result = stack_[0]->OutputShape(input_shape);
int stack_size = stack_.size();
for (int i = 1; i < stack_size; ++i) {
StaticShape shape = stack_[i]->OutputShape(input_shape);
result.set_depth(result.depth() + shape.depth());
}
return result;
}
// Runs forward propagation of activations on the input line.
// See NetworkCpp for a detailed discussion of the arguments.
void Parallel::Forward(bool debug, const NetworkIO& input,
const TransposedArray* input_transpose,
NetworkScratch* scratch, NetworkIO* output) {
bool parallel_debug = false;
// If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair,
// or a 2-d LSTM quad, do debug locally, and don't pass the flag on.
if (debug && type_ != NT_PARALLEL) {
parallel_debug = true;
debug = false;
}
int stack_size = stack_.size();
if (type_ == NT_PAR_2D_LSTM) {
// Special case, run parallel in parallel.
GenericVector<NetworkScratch::IO> results;
results.init_to_size(stack_size, NetworkScratch::IO());
for (int i = 0; i < stack_size; ++i) {
results[i].Resize(input, stack_[i]->NumOutputs(), scratch);
}
#ifdef _OPENMP
#pragma omp parallel for num_threads(stack_size)
#endif
for (int i = 0; i < stack_size; ++i) {
stack_[i]->Forward(debug, input, NULL, scratch, results[i]);
}
// Now pack all the results (serially) into the output.
int out_offset = 0;
output->Resize(*results[0], NumOutputs());
for (int i = 0; i < stack_size; ++i) {
out_offset = output->CopyPacking(*results[i], out_offset);
}
} else {
// Revolving intermediate result.
NetworkScratch::IO result(input, scratch);
// Source for divided replicated.
NetworkScratch::IO source_part;
TransposedArray* src_transpose = NULL;
if (IsTraining() && type_ == NT_REPLICATED) {
// Make a transposed copy of the input.
input.Transpose(&transposed_input_);
src_transpose = &transposed_input_;
}
// Run each network, putting the outputs into result.
int out_offset = 0;
for (int i = 0; i < stack_size; ++i) {
stack_[i]->Forward(debug, input, src_transpose, scratch, result);
// All networks must have the same output width
if (i == 0) {
output->Resize(*result, NumOutputs());
} else {
ASSERT_HOST(result->Width() == output->Width());
}
out_offset = output->CopyPacking(*result, out_offset);
}
}
if (parallel_debug) {
DisplayForward(*output);
}
}
// Runs backward propagation of errors on the deltas line.
// See NetworkCpp for a detailed discussion of the arguments.
bool Parallel::Backward(bool debug, const NetworkIO& fwd_deltas,
NetworkScratch* scratch,
NetworkIO* back_deltas) {
// If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair,
// or a 2-d LSTM quad, do debug locally, and don't pass the flag on.
if (debug && type_ != NT_PARALLEL) {
DisplayBackward(fwd_deltas);
debug = false;
}
int stack_size = stack_.size();
if (type_ == NT_PAR_2D_LSTM) {
// Special case, run parallel in parallel.
GenericVector<NetworkScratch::IO> in_deltas, out_deltas;
in_deltas.init_to_size(stack_size, NetworkScratch::IO());
out_deltas.init_to_size(stack_size, NetworkScratch::IO());
// Split the forward deltas for each stack element.
int feature_offset = 0;
for (int i = 0; i < stack_.size(); ++i) {
int num_features = stack_[i]->NumOutputs();
in_deltas[i].Resize(fwd_deltas, num_features, scratch);
out_deltas[i].Resize(fwd_deltas, stack_[i]->NumInputs(), scratch);
in_deltas[i]->CopyUnpacking(fwd_deltas, feature_offset, num_features);
feature_offset += num_features;
}
#ifdef _OPENMP
#pragma omp parallel for num_threads(stack_size)
#endif
for (int i = 0; i < stack_size; ++i) {
stack_[i]->Backward(debug, *in_deltas[i], scratch,
i == 0 ? back_deltas : out_deltas[i]);
}
if (needs_to_backprop_) {
for (int i = 1; i < stack_size; ++i) {
back_deltas->AddAllToFloat(*out_deltas[i]);
}
}
} else {
// Revolving partial deltas.
NetworkScratch::IO in_deltas(fwd_deltas, scratch);
// The sum of deltas from different sources, which will eventually go into
// back_deltas.
NetworkScratch::IO out_deltas;
int feature_offset = 0;
for (int i = 0; i < stack_.size(); ++i) {
int num_features = stack_[i]->NumOutputs();
in_deltas->CopyUnpacking(fwd_deltas, feature_offset, num_features);
feature_offset += num_features;
if (stack_[i]->Backward(debug, *in_deltas, scratch, back_deltas)) {
if (i == 0) {
out_deltas.ResizeFloat(*back_deltas, back_deltas->NumFeatures(),
scratch);
out_deltas->CopyAll(*back_deltas);
} else if (back_deltas->NumFeatures() == out_deltas->NumFeatures()) {
// Widths are allowed to be different going back, as we may have
// input nets, so only accumulate the deltas if the widths are the
// same.
out_deltas->AddAllToFloat(*back_deltas);
}
}
}
if (needs_to_backprop_) back_deltas->CopyAll(*out_deltas);
}
if (needs_to_backprop_) back_deltas->ScaleFloatBy(1.0f / stack_size);
return needs_to_backprop_;
}
} // namespace tesseract.