tesseract/wordrec/segsearch.cpp

424 lines
19 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: segsearch.h
// Description: Segmentation search functions.
// Author: Daria Antonova
// Created: Mon Jun 23 11:26:43 PDT 2008
//
// (C) Copyright 2009, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "wordrec.h"
#include "associate.h"
#include "baseline.h"
#include "language_model.h"
#include "matrix.h"
#include "oldheap.h"
#include "params.h"
#include "ratngs.h"
#include "states.h"
ELISTIZE(SEG_SEARCH_PENDING);
namespace tesseract {
void Wordrec::SegSearch(CHUNKS_RECORD *chunks_record,
WERD_CHOICE *best_choice,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
WERD_CHOICE *raw_choice,
STATE *output_best_state,
BlamerBundle *blamer_bundle) {
int row, col = 0;
if (segsearch_debug_level > 0) {
tprintf("Starting SegSearch on ratings matrix:\n");
chunks_record->ratings->print(getDict().getUnicharset());
}
// Start with a fresh best_choice since rating adjustments
// used by the chopper and the new segmentation search are not compatible.
best_choice->set_rating(WERD_CHOICE::kBadRating);
// TODO(antonova): Due to the fact that we currently do not re-start the
// segmentation search from the best choice the chopper found, sometimes
// the the segmentation search does not find the best path (that chopper
// did discover) and does not have a chance to adapt to it. As soon as we
// transition to using new-style language model penalties in the chopper
// this issue will be resolved. But for how we are forced clear the
// accumulator choices.
//
// Clear best choice accumulator (that is used for adaption), so that
// choices adjusted by chopper do not interfere with the results from the
// segmentation search.
getDict().ClearBestChoiceAccum();
MATRIX *ratings = chunks_record->ratings;
// Priority queue containing pain points generated by the language model
// The priority is set by the language model components, adjustments like
// seam cost and width priority are factored into the priority.
HEAP *pain_points = MakeHeap(segsearch_max_pain_points);
// best_path_by_column records the lowest cost path found so far for each
// column of the chunks_record->ratings matrix over all the rows.
BestPathByColumn *best_path_by_column =
new BestPathByColumn[ratings->dimension()];
for (col = 0; col < ratings->dimension(); ++col) {
best_path_by_column[col].avg_cost = WERD_CHOICE::kBadRating;
best_path_by_column[col].best_vse = NULL;
}
// Compute scaling factor that will help us recover blob outline length
// from classifier rating and certainty for the blob.
float rating_cert_scale = -1.0 * getDict().certainty_scale / rating_scale;
language_model_->InitForWord(prev_word_best_choice_,
assume_fixed_pitch_char_segment,
best_choice->certainty(),
segsearch_max_char_wh_ratio, rating_cert_scale,
pain_points, chunks_record, blamer_bundle,
wordrec_debug_blamer);
MATRIX_COORD *pain_point;
float pain_point_priority;
BestChoiceBundle best_choice_bundle(
output_best_state, best_choice, raw_choice, best_char_choices);
// pending[i] stores a list of the parent/child pair of BLOB_CHOICE_LISTs,
// where i is the column of the child. Initially all the classified entries
// in the ratings matrix from column 0 (with parent NULL) are inserted into
// pending[0]. As the language model state is updated, new child/parent
// pairs are inserted into the lists. Next, the entries in pending[1] are
// considered, and so on. It is important that during the update the
// children are considered in the non-decreasing order of their column, since
// this guarantees that all the parents would be up to date before an update
// of a child is done.
SEG_SEARCH_PENDING_LIST *pending =
new SEG_SEARCH_PENDING_LIST[ratings->dimension()];
// Search for the ratings matrix for the initial best path.
for (row = 0; row < ratings->dimension(); ++row) {
if (ratings->get(0, row) != NOT_CLASSIFIED) {
pending[0].add_sorted(
SEG_SEARCH_PENDING::compare, true,
new SEG_SEARCH_PENDING(row, NULL, LanguageModel::kAllChangedFlag));
}
}
UpdateSegSearchNodes(0, &pending, &best_path_by_column, chunks_record,
pain_points, &best_choice_bundle, blamer_bundle);
// Keep trying to find a better path by fixing the "pain points".
int num_futile_classifications = 0;
STRING blamer_debug;
while (!SegSearchDone(num_futile_classifications) ||
(blamer_bundle != NULL &&
blamer_bundle->segsearch_is_looking_for_blame)) {
// Get the next valid "pain point".
int pop;
while (true) {
pop = HeapPop(pain_points, &pain_point_priority, &pain_point);
if (pop == EMPTY) break;
if (pain_point->Valid(*ratings) &&
ratings->get(pain_point->col, pain_point->row) == NOT_CLASSIFIED) {
break;
} else {
delete pain_point;
}
}
if (pop == EMPTY) {
if (segsearch_debug_level > 0) tprintf("Pain points queue is empty\n");
break;
}
ProcessSegSearchPainPoint(pain_point_priority, *pain_point,
best_choice_bundle.best_choice, &pending,
chunks_record, pain_points, blamer_bundle);
UpdateSegSearchNodes(pain_point->col, &pending, &best_path_by_column,
chunks_record, pain_points, &best_choice_bundle,
blamer_bundle);
if (!best_choice_bundle.updated) ++num_futile_classifications;
if (segsearch_debug_level > 0) {
tprintf("num_futile_classifications %d\n", num_futile_classifications);
}
best_choice_bundle.updated = false; // reset updated
delete pain_point; // done using this pain point
// See if it's time to terminate SegSearch or time for starting a guided
// search for the true path to find the blame for the incorrect best_choice.
if (SegSearchDone(num_futile_classifications) && blamer_bundle != NULL &&
blamer_bundle->incorrect_result_reason == IRR_CORRECT &&
!blamer_bundle->segsearch_is_looking_for_blame &&
blamer_bundle->truth_has_char_boxes &&
!ChoiceIsCorrect(getDict().getUnicharset(),
best_choice, blamer_bundle->truth_text)) {
InitBlamerForSegSearch(best_choice_bundle.best_choice, chunks_record,
pain_points, blamer_bundle, &blamer_debug);
}
} // end while loop exploring alternative paths
FinishBlamerForSegSearch(best_choice_bundle.best_choice,
blamer_bundle, &blamer_debug);
if (segsearch_debug_level > 0) {
tprintf("Done with SegSearch (AcceptableChoiceFound: %d)\n",
language_model_->AcceptableChoiceFound());
}
// Clean up.
FreeHeapData(pain_points, MATRIX_COORD::Delete);
delete[] best_path_by_column;
delete[] pending;
for (row = 0; row < ratings->dimension(); ++row) {
for (col = 0; col <= row; ++col) {
BLOB_CHOICE_LIST *rating = ratings->get(col, row);
if (rating != NOT_CLASSIFIED) language_model_->DeleteState(rating);
}
}
}
void Wordrec::UpdateSegSearchNodes(
int starting_col,
SEG_SEARCH_PENDING_LIST *pending[],
BestPathByColumn *best_path_by_column[],
CHUNKS_RECORD *chunks_record,
HEAP *pain_points,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle) {
MATRIX *ratings = chunks_record->ratings;
for (int col = starting_col; col < ratings->dimension(); ++col) {
if (segsearch_debug_level > 0) {
tprintf("\n\nUpdateSegSearchNodes: evaluate children in col=%d\n", col);
}
// Iterate over the pending list for this column.
SEG_SEARCH_PENDING_LIST *pending_list = &((*pending)[col]);
SEG_SEARCH_PENDING_IT pending_it(pending_list);
GenericVector<int> non_empty_rows;
while (!pending_it.empty()) {
// Update language model state of this child+parent pair.
SEG_SEARCH_PENDING *p = pending_it.extract();
if (non_empty_rows.length() == 0 ||
non_empty_rows[non_empty_rows.length()-1] != p->child_row) {
non_empty_rows.push_back(p->child_row);
}
BLOB_CHOICE_LIST *current_node = ratings->get(col, p->child_row);
LanguageModelFlagsType new_changed =
language_model_->UpdateState(p->changed, col, p->child_row,
current_node, p->parent, pain_points,
best_path_by_column, chunks_record,
best_choice_bundle, blamer_bundle);
if (new_changed) {
// Since the language model state of this entry changed, add all the
// pairs with it as a parent and each of its children to pending, so
// that the children are updated as well.
int child_col = p->child_row + 1;
for (int child_row = child_col;
child_row < ratings->dimension(); ++child_row) {
if (ratings->get(child_col, child_row) != NOT_CLASSIFIED) {
SEG_SEARCH_PENDING *new_pending =
new SEG_SEARCH_PENDING(child_row, current_node, 0);
SEG_SEARCH_PENDING *actual_new_pending =
reinterpret_cast<SEG_SEARCH_PENDING *>(
(*pending)[child_col].add_sorted_and_find(
SEG_SEARCH_PENDING::compare, true, new_pending));
if (new_pending != actual_new_pending) delete new_pending;
actual_new_pending->changed |= new_changed;
if (segsearch_debug_level > 0) {
tprintf("Added child(col=%d row=%d) parent(col=%d row=%d)"
" changed=0x%x to pending\n", child_col,
actual_new_pending->child_row,
col, p->child_row, actual_new_pending->changed);
}
}
}
} // end if new_changed
delete p; // clean up
pending_it.forward();
} // end while !pending_it.empty()
language_model_->GeneratePainPointsFromColumn(
col, non_empty_rows, best_choice_bundle->best_choice->certainty(),
pain_points, best_path_by_column, chunks_record);
} // end for col
if (best_choice_bundle->updated) {
language_model_->GeneratePainPointsFromBestChoice(
pain_points, chunks_record, best_choice_bundle);
}
language_model_->CleanUp();
}
void Wordrec::ProcessSegSearchPainPoint(float pain_point_priority,
const MATRIX_COORD &pain_point,
const WERD_CHOICE *best_choice,
SEG_SEARCH_PENDING_LIST *pending[],
CHUNKS_RECORD *chunks_record,
HEAP *pain_points,
BlamerBundle *blamer_bundle) {
if (segsearch_debug_level > 0) {
tprintf("Classifying pain point priority=%.4f, col=%d, row=%d\n",
pain_point_priority, pain_point.col, pain_point.row);
}
MATRIX *ratings = chunks_record->ratings;
BLOB_CHOICE_LIST *classified = classify_piece(
chunks_record->chunks, chunks_record->word_res->denorm,
chunks_record->splits,
pain_point.col, pain_point.row, blamer_bundle);
ratings->put(pain_point.col, pain_point.row, classified);
if (segsearch_debug_level > 0) {
print_ratings_list("Updated ratings matrix with a new entry:",
ratings->get(pain_point.col, pain_point.row),
getDict().getUnicharset());
ratings->print(getDict().getUnicharset());
}
// Insert initial "pain points" to join the newly classified blob
// with its left and right neighbors.
if (!classified->empty()) {
float worst_piece_cert;
bool fragmented;
if (pain_point.col > 0) {
language_model_->GetWorstPieceCertainty(
pain_point.col-1, pain_point.row, chunks_record->ratings,
&worst_piece_cert, &fragmented);
language_model_->GeneratePainPoint(
pain_point.col-1, pain_point.row, false,
LanguageModel::kInitialPainPointPriorityAdjustment,
worst_piece_cert, fragmented, best_choice->certainty(),
segsearch_max_char_wh_ratio, NULL, NULL,
chunks_record, pain_points);
}
if (pain_point.row+1 < ratings->dimension()) {
language_model_->GetWorstPieceCertainty(
pain_point.col, pain_point.row+1, chunks_record->ratings,
&worst_piece_cert, &fragmented);
language_model_->GeneratePainPoint(
pain_point.col, pain_point.row+1, true,
LanguageModel::kInitialPainPointPriorityAdjustment,
worst_piece_cert, fragmented, best_choice->certainty(),
segsearch_max_char_wh_ratio, NULL, NULL,
chunks_record, pain_points);
}
}
// Record a pending entry with the pain_point and each of its parents.
int parent_row = pain_point.col - 1;
if (parent_row < 0) { // this node has no parents
(*pending)[pain_point.col].add_sorted(
SEG_SEARCH_PENDING::compare, true,
new SEG_SEARCH_PENDING(pain_point.row, NULL,
LanguageModel::kAllChangedFlag));
} else {
for (int parent_col = 0; parent_col < pain_point.col; ++parent_col) {
if (ratings->get(parent_col, parent_row) != NOT_CLASSIFIED) {
(*pending)[pain_point.col].add_sorted(
SEG_SEARCH_PENDING::compare, true,
new SEG_SEARCH_PENDING(pain_point.row,
ratings->get(parent_col, parent_row),
LanguageModel::kAllChangedFlag));
}
}
}
}
void Wordrec::InitBlamerForSegSearch(const WERD_CHOICE *best_choice,
CHUNKS_RECORD *chunks_record,
HEAP *pain_points,
BlamerBundle *blamer_bundle,
STRING *blamer_debug) {
blamer_bundle->segsearch_is_looking_for_blame = true;
if (wordrec_debug_blamer) {
tprintf("segsearch starting to look for blame\n");
}
// Clear pain points heap.
int pop;
float pain_point_priority;
MATRIX_COORD *pain_point;
while ((pop = HeapPop(pain_points, &pain_point_priority,
&pain_point)) != EMPTY) {
delete pain_point;
}
// Fill pain points for any unclassifed blob corresponding to the
// correct segmentation state.
*blamer_debug += "Correct segmentation:\n";
for (int idx = 0;
idx < blamer_bundle->correct_segmentation_cols.length(); ++idx) {
blamer_debug->add_str_int(
"col=", blamer_bundle->correct_segmentation_cols[idx]);
blamer_debug->add_str_int(
" row=", blamer_bundle->correct_segmentation_rows[idx]);
*blamer_debug += "\n";
if (chunks_record->ratings->get(
blamer_bundle->correct_segmentation_cols[idx],
blamer_bundle->correct_segmentation_rows[idx]) == NOT_CLASSIFIED) {
if (!language_model_->GeneratePainPoint(
blamer_bundle->correct_segmentation_cols[idx],
blamer_bundle->correct_segmentation_rows[idx],
false, -1.0, -1.0, false, -1.0, segsearch_max_char_wh_ratio,
NULL, NULL, chunks_record, pain_points)) {
blamer_bundle->segsearch_is_looking_for_blame = false;
*blamer_debug += "\nFailed to insert pain point\n";
blamer_bundle->SetBlame(IRR_SEGSEARCH_HEUR, *blamer_debug, best_choice,
wordrec_debug_blamer);
break;
}
}
} // end for blamer_bundle->correct_segmentation_cols/rows
}
void Wordrec::FinishBlamerForSegSearch(const WERD_CHOICE *best_choice,
BlamerBundle *blamer_bundle,
STRING *blamer_debug) {
// If we are still looking for blame (i.e. best_choice is incorrect, but a
// path representing the correct segmentation could be constructed), we can
// blame segmentation search pain point prioritization if the rating of the
// path corresponding to the correct segmentation is better than that of
// best_choice (i.e. language model would have done the correct thing, but
// because of poor pain point prioritization the correct segmentation was
// never explored). Otherwise we blame the tradeoff between the language model
// and the classifier, since even after exploring the path corresponding to
// the correct segmentation incorrect best_choice would have been chosen.
// One special case when we blame the classifier instead is when best choice
// is incorrect, but it is a dictionary word and it classifier's top choice.
if (blamer_bundle != NULL && blamer_bundle->segsearch_is_looking_for_blame) {
blamer_bundle->segsearch_is_looking_for_blame = false;
if (blamer_bundle->best_choice_is_dict_and_top_choice) {
*blamer_debug = "Best choice is: incorrect, top choice, dictionary word";
*blamer_debug += " with permuter ";
*blamer_debug += best_choice->permuter_name();
blamer_bundle->SetBlame(IRR_CLASSIFIER, *blamer_debug, best_choice,
wordrec_debug_blamer);
} else if (blamer_bundle->best_correctly_segmented_rating <
best_choice->rating()) {
*blamer_debug += "Correct segmentation state was not explored";
blamer_bundle->SetBlame(IRR_SEGSEARCH_PP, *blamer_debug, best_choice,
wordrec_debug_blamer);
} else {
if (blamer_bundle->best_correctly_segmented_rating >=
WERD_CHOICE::kBadRating) {
*blamer_debug += "Correct segmentation paths were pruned by LM\n";
} else {
char debug_buffer[256];
*blamer_debug += "Best correct segmentation rating ";
sprintf(debug_buffer, "%g",
blamer_bundle->best_correctly_segmented_rating);
*blamer_debug += debug_buffer;
*blamer_debug += " vs. best choice rating ";
sprintf(debug_buffer, "%g", best_choice->rating());
*blamer_debug += debug_buffer;
}
blamer_bundle->SetBlame(IRR_CLASS_LM_TRADEOFF, *blamer_debug, best_choice,
wordrec_debug_blamer);
}
}
}
} // namespace tesseract