tesseract/ccstruct/otsuthr.cpp
theraysmith@gmail.com 5857bebdc8 Minor formatting changes
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@992 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2014-01-17 18:54:16 +00:00

223 lines
7.8 KiB
C++

/**********************************************************************
* File: otsuthr.cpp
* Description: Simple Otsu thresholding for binarizing images.
* Author: Ray Smith
* Created: Fri Mar 07 12:31:01 PST 2008
*
* (C) Copyright 2008, Google Inc.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "otsuthr.h"
#include <string.h>
#include "allheaders.h"
#include "helpers.h"
#include "openclwrapper.h"
namespace tesseract {
// Computes the Otsu threshold(s) for the given image rectangle, making one
// for each channel. Each channel is always one byte per pixel.
// Returns an array of threshold values and an array of hi_values, such
// that a pixel value >threshold[channel] is considered foreground if
// hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates
// that there is no apparent foreground. At least one hi_value will not be -1.
// Delete thresholds and hi_values with delete [] after use.
// The return value is the number of channels in the input image, being
// the size of the output thresholds and hi_values arrays.
int OtsuThreshold(Pix* src_pix, int left, int top, int width, int height,
int** thresholds, int** hi_values) {
int num_channels = pixGetDepth(src_pix) / 8;
// Of all channels with no good hi_value, keep the best so we can always
// produce at least one answer.
PERF_COUNT_START("OtsuThreshold")
int best_hi_value = 1;
int best_hi_index = 0;
bool any_good_hivalue = false;
double best_hi_dist = 0.0;
*thresholds = new int[num_channels];
*hi_values = new int[num_channels];
// all of channel 0 then all of channel 1...
int *histogramAllChannels = new int[kHistogramSize * num_channels];
// only use opencl if compiled w/ OpenCL and selected device is opencl
#ifdef USE_OPENCL
// Calculate Histogram on GPU
OpenclDevice od;
if (od.selectedDeviceIsOpenCL() &&
(num_channels == 1 || num_channels == 4) && top == 0 && left == 0 ) {
od.HistogramRectOCL(
(const unsigned char*)pixGetData(src_pix),
num_channels,
pixGetWpl(src_pix) * 4,
left,
top,
width,
height,
kHistogramSize,
histogramAllChannels);
// Calculate Threshold from Histogram on cpu
for (int ch = 0; ch < num_channels; ++ch) {
(*thresholds)[ch] = -1;
(*hi_values)[ch] = -1;
int *histogram = &histogramAllChannels[kHistogramSize * ch];
int H;
int best_omega_0;
int best_t = OtsuStats(histogram, &H, &best_omega_0);
if (best_omega_0 == 0 || best_omega_0 == H) {
// This channel is empty.
continue;
}
// To be a convincing foreground we must have a small fraction of H
// or to be a convincing background we must have a large fraction of H.
// In between we assume this channel contains no thresholding information.
int hi_value = best_omega_0 < H * 0.5;
(*thresholds)[ch] = best_t;
if (best_omega_0 > H * 0.75) {
any_good_hivalue = true;
(*hi_values)[ch] = 0;
} else if (best_omega_0 < H * 0.25) {
any_good_hivalue = true;
(*hi_values)[ch] = 1;
} else {
// In case all channels are like this, keep the best of the bad lot.
double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
if (hi_dist > best_hi_dist) {
best_hi_dist = hi_dist;
best_hi_value = hi_value;
best_hi_index = ch;
}
}
}
} else {
#endif
for (int ch = 0; ch < num_channels; ++ch) {
(*thresholds)[ch] = -1;
(*hi_values)[ch] = -1;
// Compute the histogram of the image rectangle.
int histogram[kHistogramSize];
HistogramRect(src_pix, ch, left, top, width, height, histogram);
int H;
int best_omega_0;
int best_t = OtsuStats(histogram, &H, &best_omega_0);
if (best_omega_0 == 0 || best_omega_0 == H) {
// This channel is empty.
continue;
}
// To be a convincing foreground we must have a small fraction of H
// or to be a convincing background we must have a large fraction of H.
// In between we assume this channel contains no thresholding information.
int hi_value = best_omega_0 < H * 0.5;
(*thresholds)[ch] = best_t;
if (best_omega_0 > H * 0.75) {
any_good_hivalue = true;
(*hi_values)[ch] = 0;
} else if (best_omega_0 < H * 0.25) {
any_good_hivalue = true;
(*hi_values)[ch] = 1;
} else {
// In case all channels are like this, keep the best of the bad lot.
double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
if (hi_dist > best_hi_dist) {
best_hi_dist = hi_dist;
best_hi_value = hi_value;
best_hi_index = ch;
}
}
}
#ifdef USE_OPENCL
}
#endif // USE_OPENCL
delete[] histogramAllChannels;
if (!any_good_hivalue) {
// Use the best of the ones that were not good enough.
(*hi_values)[best_hi_index] = best_hi_value;
}
PERF_COUNT_END
return num_channels;
}
// Computes the histogram for the given image rectangle, and the given
// single channel. Each channel is always one byte per pixel.
// Histogram is always a kHistogramSize(256) element array to count
// occurrences of each pixel value.
void HistogramRect(Pix* src_pix, int channel,
int left, int top, int width, int height,
int* histogram) {
PERF_COUNT_START("HistogramRect")
int num_channels = pixGetDepth(src_pix) / 8;
channel = ClipToRange(channel, 0, num_channels - 1);
int bottom = top + height;
memset(histogram, 0, sizeof(*histogram) * kHistogramSize);
int src_wpl = pixGetWpl(src_pix);
l_uint32* srcdata = pixGetData(src_pix);
for (int y = top; y < bottom; ++y) {
const l_uint32* linedata = srcdata + y * src_wpl;
for (int x = 0; x < width; ++x) {
int pixel = GET_DATA_BYTE(const_cast<void*>(
reinterpret_cast<const void *>(linedata)),
(x + left) * num_channels + channel);
++histogram[pixel];
}
}
PERF_COUNT_END
}
// Computes the Otsu threshold(s) for the given histogram.
// Also returns H = total count in histogram, and
// omega0 = count of histogram below threshold.
int OtsuStats(const int* histogram, int* H_out, int* omega0_out) {
int H = 0;
double mu_T = 0.0;
for (int i = 0; i < kHistogramSize; ++i) {
H += histogram[i];
mu_T += static_cast<double>(i) * histogram[i];
}
// Now maximize sig_sq_B over t.
// http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf
int best_t = -1;
int omega_0, omega_1;
int best_omega_0 = 0;
double best_sig_sq_B = 0.0;
double mu_0, mu_1, mu_t;
omega_0 = 0;
mu_t = 0.0;
for (int t = 0; t < kHistogramSize - 1; ++t) {
omega_0 += histogram[t];
mu_t += t * static_cast<double>(histogram[t]);
if (omega_0 == 0)
continue;
omega_1 = H - omega_0;
if (omega_1 == 0)
break;
mu_0 = mu_t / omega_0;
mu_1 = (mu_T - mu_t) / omega_1;
double sig_sq_B = mu_1 - mu_0;
sig_sq_B *= sig_sq_B * omega_0 * omega_1;
if (best_t < 0 || sig_sq_B > best_sig_sq_B) {
best_sig_sq_B = sig_sq_B;
best_t = t;
best_omega_0 = omega_0;
}
}
if (H_out != NULL) *H_out = H;
if (omega0_out != NULL) *omega0_out = best_omega_0;
return best_t;
}
} // namespace tesseract.