tesseract/classify/sampleiterator.cpp

263 lines
8.7 KiB
C++

// Copyright 2011 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "sampleiterator.h"
#include "indexmapbidi.h"
#include "shapetable.h"
#include "trainingsample.h"
#include "trainingsampleset.h"
namespace tesseract {
// ================== SampleIterator Implementation =================
SampleIterator::SampleIterator()
: charset_map_(NULL),
shape_table_(NULL),
sample_set_(NULL),
randomize_(false),
owned_shape_table_(NULL) {
num_shapes_ = 0;
Begin();
}
SampleIterator::~SampleIterator() {
Clear();
}
void SampleIterator::Clear() {
delete owned_shape_table_;
owned_shape_table_ = NULL;
}
// See class comment for arguments.
void SampleIterator::Init(const IndexMapBiDi* charset_map,
const ShapeTable* shape_table,
bool randomize,
TrainingSampleSet* sample_set) {
Clear();
charset_map_ = charset_map;
shape_table_ = shape_table;
sample_set_ = sample_set;
randomize_ = randomize;
if (shape_table_ == NULL && charset_map_ != NULL) {
// The caller wishes to iterate by class. The easiest way to do this
// is to create a dummy shape_table_ that we will own.
int num_fonts = sample_set_->NumFonts();
owned_shape_table_ = new ShapeTable(sample_set_->unicharset());
int charsetsize = sample_set_->unicharset().size();
for (int c = 0; c < charsetsize; ++c) {
// We always add a shape for each character to keep the index in sync
// with the unichar_id.
int shape_id = owned_shape_table_->AddShape(c, 0);
for (int f = 1; f < num_fonts; ++f) {
if (sample_set_->NumClassSamples(f, c, true) > 0) {
owned_shape_table_->AddToShape(shape_id, c, f);
}
}
}
shape_table_ = owned_shape_table_;
}
if (shape_table_ != NULL) {
num_shapes_ = shape_table_->NumShapes();
} else {
num_shapes_ = randomize ? sample_set_->num_samples()
: sample_set_->num_raw_samples();
}
Begin();
}
// Iterator functions designed for use with a simple for loop:
// for (it.Begin(); !it.AtEnd(); it.Next()) {
// const TrainingSample& sample = it.GetSample();
// }
void SampleIterator::Begin() {
shape_index_ = -1;
shape_char_index_ = 0;
num_shape_chars_ = 0;
shape_font_index_ = 0;
num_shape_fonts_ = 0;
sample_index_ = 0;
num_samples_ = 0;
// Find the first indexable sample.
Next();
}
bool SampleIterator::AtEnd() const {
return shape_index_ >= num_shapes_;
}
const TrainingSample& SampleIterator::GetSample() const {
if (shape_table_ != NULL) {
const UnicharAndFonts* shape_entry = GetShapeEntry();
int char_id = shape_entry->unichar_id;
int font_id = shape_entry->font_ids[shape_font_index_];
return *sample_set_->GetSample(font_id, char_id, sample_index_);
} else {
return *sample_set_->GetSample(shape_index_);
}
}
TrainingSample* SampleIterator::MutableSample() const {
if (shape_table_ != NULL) {
const UnicharAndFonts* shape_entry = GetShapeEntry();
int char_id = shape_entry->unichar_id;
int font_id = shape_entry->font_ids[shape_font_index_];
return sample_set_->MutableSample(font_id, char_id, sample_index_);
} else {
return sample_set_->mutable_sample(shape_index_);
}
}
// Returns the total index (from the original set of samples) of the current
// sample.
int SampleIterator::GlobalSampleIndex() const {
if (shape_table_ != NULL) {
const UnicharAndFonts* shape_entry = GetShapeEntry();
int char_id = shape_entry->unichar_id;
int font_id = shape_entry->font_ids[shape_font_index_];
return sample_set_->GlobalSampleIndex(font_id, char_id, sample_index_);
} else {
return shape_index_;
}
}
// Returns the index of the current sample in compact charset space, so
// in a 2-class problem between x and y, the returned indices will all be
// 0 or 1, and have nothing to do with the unichar_ids.
// If the charset_map_ is NULL, then this is equal to GetSparseClassID().
int SampleIterator::GetCompactClassID() const {
return charset_map_ != NULL ? charset_map_->SparseToCompact(shape_index_)
: GetSparseClassID();
}
// Returns the index of the current sample in sparse charset space, so
// in a 2-class problem between x and y, the returned indices will all be
// x or y, where x and y may be unichar_ids (no shape_table_) or shape_ids
// with a shape_table_.
int SampleIterator::GetSparseClassID() const {
return shape_table_ != NULL ? shape_index_ : GetSample().class_id();
}
// Moves on to the next indexable sample. If the end is reached, leaves
// the state such that AtEnd() is true.
void SampleIterator::Next() {
if (shape_table_ != NULL) {
// Next sample in this class/font combination.
++sample_index_;
if (sample_index_ < num_samples_)
return;
// Next font in this class in this shape.
sample_index_ = 0;
do {
++shape_font_index_;
if (shape_font_index_ >= num_shape_fonts_) {
// Next unichar in this shape.
shape_font_index_ = 0;
++shape_char_index_;
if (shape_char_index_ >= num_shape_chars_) {
// Find the next shape that is mapped in the charset_map_.
shape_char_index_ = 0;
do {
++shape_index_;
} while (shape_index_ < num_shapes_ &&
charset_map_ != NULL &&
charset_map_->SparseToCompact(shape_index_) < 0);
if (shape_index_ >= num_shapes_)
return; // The end.
num_shape_chars_ = shape_table_->GetShape(shape_index_).size();
}
}
const UnicharAndFonts* shape_entry = GetShapeEntry();
num_shape_fonts_ = shape_entry->font_ids.size();
int char_id = shape_entry->unichar_id;
int font_id = shape_entry->font_ids[shape_font_index_];
num_samples_ = sample_set_->NumClassSamples(font_id, char_id, randomize_);
} while (num_samples_ == 0);
} else {
// We are just iterating over the samples.
++shape_index_;
}
}
// Returns the size of the compact charset space.
int SampleIterator::CompactCharsetSize() const {
return charset_map_ != NULL ? charset_map_->CompactSize()
: SparseCharsetSize();
}
// Returns the size of the sparse charset space.
int SampleIterator::SparseCharsetSize() const {
return charset_map_ != NULL
? charset_map_->SparseSize()
: (shape_table_ != NULL ? shape_table_->NumShapes()
: sample_set_->charsetsize());
}
// Apply the supplied feature_space/feature_map transform to all samples
// accessed by this iterator.
void SampleIterator::MapSampleFeatures(const IntFeatureMap& feature_map) {
for (Begin(); !AtEnd(); Next()) {
TrainingSample* sample = MutableSample();
sample->MapFeatures(feature_map);
}
}
// Adjust the weights of all the samples to be uniform in the given charset.
// Returns the number of samples in the iterator.
int SampleIterator::UniformSamples() {
int num_good_samples = 0;
for (Begin(); !AtEnd(); Next()) {
TrainingSample* sample = MutableSample();
sample->set_weight(1.0);
++num_good_samples;
}
NormalizeSamples();
return num_good_samples;
}
// Normalize the weights of all the samples in the charset_map so they sum
// to 1. Returns the minimum assigned sample weight.
double SampleIterator::NormalizeSamples() {
double total_weight = 0.0;
int sample_count = 0;
for (Begin(); !AtEnd(); Next()) {
const TrainingSample& sample = GetSample();
total_weight += sample.weight();
++sample_count;
}
// Normalize samples.
double min_assigned_sample_weight = 1.0;
if (total_weight > 0.0) {
for (Begin(); !AtEnd(); Next()) {
TrainingSample* sample = MutableSample();
double weight = sample->weight() / total_weight;
if (weight < min_assigned_sample_weight)
min_assigned_sample_weight = weight;
sample->set_weight(weight);
}
}
return min_assigned_sample_weight;
}
// Helper returns the current UnicharAndFont shape_entry.
const UnicharAndFonts* SampleIterator::GetShapeEntry() const {
const Shape& shape = shape_table_->GetShape(shape_index_);
return &shape[shape_char_index_];
}
} // namespace tesseract.