tesseract/lstm/fullyconnected.h

140 lines
5.7 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: fullyconnected.h
// Description: Simple feed-forward layer with various non-linearities.
// Author: Ray Smith
// Created: Wed Feb 26 14:46:06 PST 2014
//
// (C) Copyright 2014, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_LSTM_FULLYCONNECTED_H_
#define TESSERACT_LSTM_FULLYCONNECTED_H_
#include "network.h"
#include "networkscratch.h"
namespace tesseract {
// C++ Implementation of the Softmax (output) class from lstm.py.
class FullyConnected : public Network {
public:
FullyConnected(const STRING& name, int ni, int no, NetworkType type);
virtual ~FullyConnected();
// Returns the shape output from the network given an input shape (which may
// be partially unknown ie zero).
virtual StaticShape OutputShape(const StaticShape& input_shape) const;
virtual STRING spec() const {
STRING spec;
if (type_ == NT_TANH)
spec.add_str_int("Ft", no_);
else if (type_ == NT_LOGISTIC)
spec.add_str_int("Fs", no_);
else if (type_ == NT_RELU)
spec.add_str_int("Fr", no_);
else if (type_ == NT_LINEAR)
spec.add_str_int("Fl", no_);
else if (type_ == NT_POSCLIP)
spec.add_str_int("Fp", no_);
else if (type_ == NT_SYMCLIP)
spec.add_str_int("Fs", no_);
else if (type_ == NT_SOFTMAX)
spec.add_str_int("Fc", no_);
else
spec.add_str_int("Fm", no_);
return spec;
}
// Changes the type to the given type. Used to commute a softmax to a
// non-output type for adding on other networks.
void ChangeType(NetworkType type) {
type_ = type;
}
// Suspends/Enables training by setting the training_ flag. Serialize and
// DeSerialize only operate on the run-time data if state is false.
virtual void SetEnableTraining(TrainingState state);
// Sets up the network for training. Initializes weights using weights of
// scale `range` picked according to the random number generator `randomizer`.
virtual int InitWeights(float range, TRand* randomizer);
// Changes the number of outputs to the size of the given code_map, copying
// the old weight matrix entries for each output from code_map[output] where
// non-negative, and uses the mean (over all outputs) of the existing weights
// for all outputs with negative code_map entries. Returns the new number of
// weights. Only operates on Softmax layers with old_no outputs.
int RemapOutputs(int old_no, const std::vector<int>& code_map) override;
// Converts a float network to an int network.
virtual void ConvertToInt();
// Provides debug output on the weights.
virtual void DebugWeights();
// Writes to the given file. Returns false in case of error.
virtual bool Serialize(TFile* fp) const;
// Reads from the given file. Returns false in case of error.
virtual bool DeSerialize(TFile* fp);
// Runs forward propagation of activations on the input line.
// See Network for a detailed discussion of the arguments.
virtual void Forward(bool debug, const NetworkIO& input,
const TransposedArray* input_transpose,
NetworkScratch* scratch, NetworkIO* output);
// Components of Forward so FullyConnected can be reused inside LSTM.
void SetupForward(const NetworkIO& input,
const TransposedArray* input_transpose);
void ForwardTimeStep(const double* d_input, const inT8* i_input, int t,
double* output_line);
// Runs backward propagation of errors on the deltas line.
// See Network for a detailed discussion of the arguments.
virtual bool Backward(bool debug, const NetworkIO& fwd_deltas,
NetworkScratch* scratch,
NetworkIO* back_deltas);
// Components of Backward so FullyConnected can be reused inside LSTM.
void BackwardTimeStep(const NetworkIO& fwd_deltas, int t, double* curr_errors,
TransposedArray* errors_t, double* backprop);
void FinishBackward(const TransposedArray& errors_t);
// Updates the weights using the given learning rate, momentum and adam_beta.
// num_samples is used in the adam computation iff use_adam_ is true.
void Update(float learning_rate, float momentum, float adam_beta,
int num_samples) override;
// Sums the products of weight updates in *this and other, splitting into
// positive (same direction) in *same and negative (different direction) in
// *changed.
virtual void CountAlternators(const Network& other, double* same,
double* changed) const;
protected:
// Weight arrays of size [no, ni + 1].
WeightMatrix weights_;
// Transposed copy of input used during training of size [ni, width].
TransposedArray source_t_;
// Pointer to transposed input stored elsewhere. If not null, this is used
// in preference to calculating the transpose and storing it in source_t_.
const TransposedArray* external_source_;
// Activations from forward pass of size [width, no].
NetworkIO acts_;
// Memory of the integer mode input to forward as softmax always outputs
// float, so the information is otherwise lost.
bool int_mode_;
};
} // namespace tesseract.
#endif // TESSERACT_LSTM_FULLYCONNECTED_H_