mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-24 02:59:07 +08:00
5bc5e2a0b4
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@650 d0cd1f9f-072b-0410-8dd7-cf729c803f20
118 lines
4.3 KiB
C++
118 lines
4.3 KiB
C++
/******************************************************************************
|
|
** Filename: float2int.c
|
|
** Purpose: Routines for converting float features to int features
|
|
** Author: Dan Johnson
|
|
** History: Wed Mar 13 07:47:48 1991, DSJ, Created.
|
|
**
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
/*-----------------------------------------------------------------------------
|
|
Include Files and Type Defines
|
|
-----------------------------------------------------------------------------*/
|
|
#include "float2int.h"
|
|
#include "normmatch.h"
|
|
#include "mfoutline.h"
|
|
#include "classify.h"
|
|
#include "helpers.h"
|
|
#include "picofeat.h"
|
|
|
|
#define MAX_INT_CHAR_NORM (INT_CHAR_NORM_RANGE - 1)
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
Public Code
|
|
-----------------------------------------------------------------------------*/
|
|
/*---------------------------------------------------------------------------*/
|
|
namespace tesseract {
|
|
|
|
/**
|
|
* For each class in the unicharset, clears the corresponding
|
|
* entry in char_norm_array. char_norm_array is indexed by unichar_id.
|
|
*
|
|
* Globals:
|
|
* - none
|
|
*
|
|
* @param char_norm_array array to be cleared
|
|
*
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 20 11:20:54 1991, DSJ, Created.
|
|
*/
|
|
void Classify::ClearCharNormArray(uinT8* char_norm_array) {
|
|
memset(char_norm_array, 0, sizeof(*char_norm_array) * unicharset.size());
|
|
} /* ClearCharNormArray */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* For each class in unicharset, computes the match between
|
|
* norm_feature and the normalization protos for that class.
|
|
* Converts this number to the range from 0 - 255 and stores it
|
|
* into char_norm_array. CharNormArray is indexed by unichar_id.
|
|
*
|
|
* Globals:
|
|
* - none
|
|
*
|
|
* @param norm_feature character normalization feature
|
|
* @param[out] char_norm_array place to put results of size unicharset.size()
|
|
*
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 20 11:20:54 1991, DSJ, Created.
|
|
*/
|
|
void Classify::ComputeIntCharNormArray(const FEATURE_STRUCT& norm_feature,
|
|
uinT8* char_norm_array) {
|
|
for (int i = 0; i < unicharset.size(); i++) {
|
|
int norm_adjust = static_cast<int>(INT_CHAR_NORM_RANGE *
|
|
ComputeNormMatch(i, norm_feature, FALSE));
|
|
char_norm_array[i] = ClipToRange(norm_adjust, 0, MAX_INT_CHAR_NORM);
|
|
}
|
|
} /* ComputeIntCharNormArray */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* This routine converts each floating point pico-feature
|
|
* in Features into integer format and saves it into
|
|
* IntFeatures.
|
|
*
|
|
* Globals:
|
|
* - none
|
|
*
|
|
* @param Features floating point pico-features to be converted
|
|
* @param[out] IntFeatures array to put converted features into
|
|
*
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 20 10:58:45 1991, DSJ, Created.
|
|
*/
|
|
void Classify::ComputeIntFeatures(FEATURE_SET Features,
|
|
INT_FEATURE_ARRAY IntFeatures) {
|
|
int Fid;
|
|
FEATURE Feature;
|
|
FLOAT32 YShift;
|
|
|
|
if (classify_norm_method == baseline)
|
|
YShift = BASELINE_Y_SHIFT;
|
|
else
|
|
YShift = Y_SHIFT;
|
|
|
|
for (Fid = 0; Fid < Features->NumFeatures; Fid++) {
|
|
Feature = Features->Features[Fid];
|
|
|
|
IntFeatures[Fid].X = BucketFor (Feature->Params[PicoFeatX],
|
|
X_SHIFT, INT_FEAT_RANGE);
|
|
IntFeatures[Fid].Y = BucketFor (Feature->Params[PicoFeatY],
|
|
YShift, INT_FEAT_RANGE);
|
|
IntFeatures[Fid].Theta = CircBucketFor (Feature->Params[PicoFeatDir],
|
|
ANGLE_SHIFT, INT_FEAT_RANGE);
|
|
IntFeatures[Fid].CP_misses = 0;
|
|
}
|
|
} /* ComputeIntFeatures */
|
|
} // namespace tesseract
|