mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-24 02:59:07 +08:00
7ec3dca968
Windows: use binary mode for fopen (issue 70); autotools: fixed cutil/Makefile.am, improved tessdata/Makefile.am; git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@604 d0cd1f9f-072b-0410-8dd7-cf729c803f20
219 lines
7.5 KiB
C++
219 lines
7.5 KiB
C++
/**********************************************************************
|
|
* File: cube_tuning_params.cpp
|
|
* Description: Implementation of the CubeTuningParameters Class
|
|
* Author: Ahmad Abdulkader
|
|
* Created: 2007
|
|
*
|
|
* (C) Copyright 2008, Google Inc.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include "cube_tuning_params.h"
|
|
#include "tuning_params.h"
|
|
#include "cube_utils.h"
|
|
|
|
namespace tesseract {
|
|
CubeTuningParams::CubeTuningParams() {
|
|
reco_wgt_ = 1.0;
|
|
size_wgt_ = 1.0;
|
|
char_bigrams_wgt_ = 1.0;
|
|
word_unigrams_wgt_ = 0.0;
|
|
max_seg_per_char_ = 8;
|
|
beam_width_ = 32;
|
|
tp_classifier_ = NN;
|
|
tp_feat_ = BMP;
|
|
conv_grid_size_ = 32;
|
|
hist_wind_wid_ = 0;
|
|
max_word_aspect_ratio_ = 10.0;
|
|
min_space_height_ratio_ = 0.2;
|
|
max_space_height_ratio_ = 0.3;
|
|
min_con_comp_size_ = 0;
|
|
combiner_run_thresh_ = 1.0;
|
|
combiner_classifier_thresh_ = 0.5;
|
|
ood_wgt_ = 1.0;
|
|
num_wgt_ = 1.0;
|
|
|
|
}
|
|
|
|
CubeTuningParams::~CubeTuningParams() {
|
|
}
|
|
|
|
// Create an Object given the data file path and the language by loading
|
|
// the approporiate file
|
|
CubeTuningParams *CubeTuningParams::Create(const string &data_file_path,
|
|
const string &lang) {
|
|
CubeTuningParams *obj = new CubeTuningParams();
|
|
if (!obj) {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Create): unable to "
|
|
"allocate new tuning params object\n");
|
|
return NULL;
|
|
}
|
|
|
|
string tuning_params_file;
|
|
tuning_params_file = data_file_path + lang;
|
|
tuning_params_file += ".cube.params";
|
|
|
|
if (!obj->Load(tuning_params_file)) {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Create): unable to "
|
|
"load tuning parameters from %s\n", tuning_params_file.c_str());
|
|
delete obj;
|
|
obj = NULL;
|
|
}
|
|
|
|
return obj;
|
|
}
|
|
|
|
// Loads the params file
|
|
bool CubeTuningParams::Load(string tuning_params_file) {
|
|
// load the string into memory
|
|
string param_str;
|
|
|
|
if (CubeUtils::ReadFileToString(tuning_params_file, ¶m_str) == false) {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Load): unable to read "
|
|
"file %s\n", tuning_params_file.c_str());
|
|
return false;
|
|
}
|
|
|
|
// split into lines
|
|
vector<string> str_vec;
|
|
CubeUtils::SplitStringUsing(param_str, "\r\n", &str_vec);
|
|
if (str_vec.size() < 8) {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Load): number of rows "
|
|
"in parameter file is too low\n");
|
|
return false;
|
|
}
|
|
|
|
// for all entries
|
|
for (int entry = 0; entry < str_vec.size(); entry++) {
|
|
// tokenize
|
|
vector<string> str_tok;
|
|
|
|
// should be only two tokens
|
|
CubeUtils::SplitStringUsing(str_vec[entry], "=", &str_tok);
|
|
if (str_tok.size() != 2) {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Load): invalid format in "
|
|
"line: %s.\n", str_vec[entry].c_str());
|
|
return false;
|
|
}
|
|
|
|
double val = 0;
|
|
char peekchar = (str_tok[1].c_str())[0];
|
|
if ((peekchar >= '0' && peekchar <= '9') ||
|
|
peekchar == '-' || peekchar == '+' ||
|
|
peekchar == '.') {
|
|
// read the value
|
|
if (sscanf(str_tok[1].c_str(), "%lf", &val) != 1) {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Load): invalid format "
|
|
"in line: %s.\n", str_vec[entry].c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// token type
|
|
if (str_tok[0] == "RecoWgt") {
|
|
reco_wgt_ = val;
|
|
} else if (str_tok[0] == "SizeWgt") {
|
|
size_wgt_ = val;
|
|
} else if (str_tok[0] == "CharBigramsWgt") {
|
|
char_bigrams_wgt_ = val;
|
|
} else if (str_tok[0] == "WordUnigramsWgt") {
|
|
word_unigrams_wgt_ = val;
|
|
} else if (str_tok[0] == "MaxSegPerChar") {
|
|
max_seg_per_char_ = static_cast<int>(val);
|
|
} else if (str_tok[0] == "BeamWidth") {
|
|
beam_width_ = static_cast<int>(val);
|
|
} else if (str_tok[0] == "Classifier") {
|
|
if (str_tok[1] == "NN") {
|
|
tp_classifier_ = TuningParams::NN;
|
|
} else if (str_tok[1] == "HYBRID_NN") {
|
|
tp_classifier_ = TuningParams::HYBRID_NN;
|
|
} else {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Load): invalid "
|
|
"classifier type in line: %s.\n", str_vec[entry].c_str());
|
|
return false;
|
|
}
|
|
} else if (str_tok[0] == "FeatureType") {
|
|
if (str_tok[1] == "BMP") {
|
|
tp_feat_ = TuningParams::BMP;
|
|
} else if (str_tok[1] == "CHEBYSHEV") {
|
|
tp_feat_ = TuningParams::CHEBYSHEV;
|
|
} else if (str_tok[1] == "HYBRID") {
|
|
tp_feat_ = TuningParams::HYBRID;
|
|
} else {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Load): invalid feature "
|
|
"type in line: %s.\n", str_vec[entry].c_str());
|
|
return false;
|
|
}
|
|
} else if (str_tok[0] == "ConvGridSize") {
|
|
conv_grid_size_ = static_cast<int>(val);
|
|
} else if (str_tok[0] == "HistWindWid") {
|
|
hist_wind_wid_ = val;
|
|
} else if (str_tok[0] == "MinConCompSize") {
|
|
min_con_comp_size_ = val;
|
|
} else if (str_tok[0] == "MaxWordAspectRatio") {
|
|
max_word_aspect_ratio_ = val;
|
|
} else if (str_tok[0] == "MinSpaceHeightRatio") {
|
|
min_space_height_ratio_ = val;
|
|
} else if (str_tok[0] == "MaxSpaceHeightRatio") {
|
|
max_space_height_ratio_ = val;
|
|
} else if (str_tok[0] == "CombinerRunThresh") {
|
|
combiner_run_thresh_ = val;
|
|
} else if (str_tok[0] == "CombinerClassifierThresh") {
|
|
combiner_classifier_thresh_ = val;
|
|
} else if (str_tok[0] == "OODWgt") {
|
|
ood_wgt_ = val;
|
|
} else if (str_tok[0] == "NumWgt") {
|
|
num_wgt_ = val;
|
|
} else {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Load): unknown parameter "
|
|
"in line: %s.\n", str_vec[entry].c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Save the parameters to a file
|
|
bool CubeTuningParams::Save(string file_name) {
|
|
FILE *params_file = fopen(file_name.c_str(), "wb");
|
|
if (params_file == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeTuningParams::Save): error opening file "
|
|
"%s for write.\n", file_name.c_str());
|
|
return false;
|
|
}
|
|
|
|
fprintf(params_file, "RecoWgt=%.4f\n", reco_wgt_);
|
|
fprintf(params_file, "SizeWgt=%.4f\n", size_wgt_);
|
|
fprintf(params_file, "CharBigramsWgt=%.4f\n", char_bigrams_wgt_);
|
|
fprintf(params_file, "WordUnigramsWgt=%.4f\n", word_unigrams_wgt_);
|
|
fprintf(params_file, "MaxSegPerChar=%d\n", max_seg_per_char_);
|
|
fprintf(params_file, "BeamWidth=%d\n", beam_width_);
|
|
fprintf(params_file, "ConvGridSize=%d\n", conv_grid_size_);
|
|
fprintf(params_file, "HistWindWid=%d\n", hist_wind_wid_);
|
|
fprintf(params_file, "MinConCompSize=%d\n", min_con_comp_size_);
|
|
fprintf(params_file, "MaxWordAspectRatio=%.4f\n", max_word_aspect_ratio_);
|
|
fprintf(params_file, "MinSpaceHeightRatio=%.4f\n", min_space_height_ratio_);
|
|
fprintf(params_file, "MaxSpaceHeightRatio=%.4f\n", max_space_height_ratio_);
|
|
fprintf(params_file, "CombinerRunThresh=%.4f\n", combiner_run_thresh_);
|
|
fprintf(params_file, "CombinerClassifierThresh=%.4f\n",
|
|
combiner_classifier_thresh_);
|
|
fprintf(params_file, "OODWgt=%.4f\n", ood_wgt_);
|
|
fprintf(params_file, "NumWgt=%.4f\n", num_wgt_);
|
|
|
|
fclose(params_file);
|
|
return true;
|
|
}
|
|
}
|