mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-23 10:56:19 +08:00
1275 lines
46 KiB
C++
1275 lines
46 KiB
C++
/******************************************************************************
|
|
** Filename: intmatcher.c
|
|
** Purpose: Generic high level classification routines.
|
|
** Author: Robert Moss
|
|
** History: Wed Feb 13 17:35:28 MST 1991, RWM, Created.
|
|
** Mon Mar 11 16:33:02 MST 1991, RWM, Modified to add
|
|
** support for adaptive matching.
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Include Files and Type Defines
|
|
----------------------------------------------------------------------------*/
|
|
#include "intmatcher.h"
|
|
|
|
#include "fontinfo.h"
|
|
#include "intproto.h"
|
|
#include "callcpp.h"
|
|
#include "scrollview.h"
|
|
#include "float2int.h"
|
|
#include "globals.h"
|
|
#include "helpers.h"
|
|
#include "classify.h"
|
|
#include "shapetable.h"
|
|
#include <math.h>
|
|
|
|
using tesseract::ScoredFont;
|
|
using tesseract::UnicharRating;
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Global Data Definitions and Declarations
|
|
----------------------------------------------------------------------------*/
|
|
// Parameters of the sigmoid used to convert similarity to evidence in the
|
|
// similarity_evidence_table_ that is used to convert distance metric to an
|
|
// 8 bit evidence value in the secondary matcher. (See IntMatcher::Init).
|
|
const float IntegerMatcher::kSEExponentialMultiplier = 0.0;
|
|
const float IntegerMatcher::kSimilarityCenter = 0.0075;
|
|
|
|
#define offset_table_entries \
|
|
255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
|
|
|
#define INTMATCHER_OFFSET_TABLE_SIZE 256
|
|
|
|
#define next_table_entries \
|
|
0, 0, 0, 0x2, 0, 0x4, 0x4, 0x6, 0, 0x8, 0x8, 0x0a, 0x08, 0x0c, 0x0c, 0x0e, \
|
|
0, 0x10, 0x10, 0x12, 0x10, 0x14, 0x14, 0x16, 0x10, 0x18, 0x18, 0x1a, \
|
|
0x18, 0x1c, 0x1c, 0x1e, 0, 0x20, 0x20, 0x22, 0x20, 0x24, 0x24, 0x26, \
|
|
0x20, 0x28, 0x28, 0x2a, 0x28, 0x2c, 0x2c, 0x2e, 0x20, 0x30, 0x30, 0x32, \
|
|
0x30, 0x34, 0x34, 0x36, 0x30, 0x38, 0x38, 0x3a, 0x38, 0x3c, 0x3c, 0x3e, \
|
|
0, 0x40, 0x40, 0x42, 0x40, 0x44, 0x44, 0x46, 0x40, 0x48, 0x48, 0x4a, \
|
|
0x48, 0x4c, 0x4c, 0x4e, 0x40, 0x50, 0x50, 0x52, 0x50, 0x54, 0x54, 0x56, \
|
|
0x50, 0x58, 0x58, 0x5a, 0x58, 0x5c, 0x5c, 0x5e, 0x40, 0x60, 0x60, 0x62, \
|
|
0x60, 0x64, 0x64, 0x66, 0x60, 0x68, 0x68, 0x6a, 0x68, 0x6c, 0x6c, 0x6e, \
|
|
0x60, 0x70, 0x70, 0x72, 0x70, 0x74, 0x74, 0x76, 0x70, 0x78, 0x78, 0x7a, \
|
|
0x78, 0x7c, 0x7c, 0x7e, 0, 0x80, 0x80, 0x82, 0x80, 0x84, 0x84, 0x86, \
|
|
0x80, 0x88, 0x88, 0x8a, 0x88, 0x8c, 0x8c, 0x8e, 0x80, 0x90, 0x90, 0x92, \
|
|
0x90, 0x94, 0x94, 0x96, 0x90, 0x98, 0x98, 0x9a, 0x98, 0x9c, 0x9c, 0x9e, \
|
|
0x80, 0xa0, 0xa0, 0xa2, 0xa0, 0xa4, 0xa4, 0xa6, 0xa0, 0xa8, 0xa8, 0xaa, \
|
|
0xa8, 0xac, 0xac, 0xae, 0xa0, 0xb0, 0xb0, 0xb2, 0xb0, 0xb4, 0xb4, 0xb6, \
|
|
0xb0, 0xb8, 0xb8, 0xba, 0xb8, 0xbc, 0xbc, 0xbe, 0x80, 0xc0, 0xc0, 0xc2, \
|
|
0xc0, 0xc4, 0xc4, 0xc6, 0xc0, 0xc8, 0xc8, 0xca, 0xc8, 0xcc, 0xcc, 0xce, \
|
|
0xc0, 0xd0, 0xd0, 0xd2, 0xd0, 0xd4, 0xd4, 0xd6, 0xd0, 0xd8, 0xd8, 0xda, \
|
|
0xd8, 0xdc, 0xdc, 0xde, 0xc0, 0xe0, 0xe0, 0xe2, 0xe0, 0xe4, 0xe4, 0xe6, \
|
|
0xe0, 0xe8, 0xe8, 0xea, 0xe8, 0xec, 0xec, 0xee, 0xe0, 0xf0, 0xf0, 0xf2, \
|
|
0xf0, 0xf4, 0xf4, 0xf6, 0xf0, 0xf8, 0xf8, 0xfa, 0xf8, 0xfc, 0xfc, 0xfe
|
|
|
|
// See http://b/19318793 (#6) for a complete discussion. Merging arrays
|
|
// offset_table and next_table helps improve performance of PIE code.
|
|
static const uinT8 data_table[512] = {offset_table_entries, next_table_entries};
|
|
|
|
static const uinT8* const offset_table = &data_table[0];
|
|
static const uinT8* const next_table =
|
|
&data_table[INTMATCHER_OFFSET_TABLE_SIZE];
|
|
|
|
namespace tesseract {
|
|
|
|
// Encapsulation of the intermediate data and computations made by the class
|
|
// pruner. The class pruner implements a simple linear classifier on binary
|
|
// features by heavily quantizing the feature space, and applying
|
|
// NUM_BITS_PER_CLASS (2)-bit weights to the features. Lack of resolution in
|
|
// weights is compensated by a non-constant bias that is dependent on the
|
|
// number of features present.
|
|
class ClassPruner {
|
|
public:
|
|
ClassPruner(int max_classes) {
|
|
// The unrolled loop in ComputeScores means that the array sizes need to
|
|
// be rounded up so that the array is big enough to accommodate the extra
|
|
// entries accessed by the unrolling. Each pruner word is of sized
|
|
// BITS_PER_WERD and each entry is NUM_BITS_PER_CLASS, so there are
|
|
// BITS_PER_WERD / NUM_BITS_PER_CLASS entries.
|
|
// See ComputeScores.
|
|
max_classes_ = max_classes;
|
|
rounded_classes_ = RoundUp(
|
|
max_classes, WERDS_PER_CP_VECTOR * BITS_PER_WERD / NUM_BITS_PER_CLASS);
|
|
class_count_ = new int[rounded_classes_];
|
|
norm_count_ = new int[rounded_classes_];
|
|
sort_key_ = new int[rounded_classes_ + 1];
|
|
sort_index_ = new int[rounded_classes_ + 1];
|
|
for (int i = 0; i < rounded_classes_; i++) {
|
|
class_count_[i] = 0;
|
|
}
|
|
pruning_threshold_ = 0;
|
|
num_features_ = 0;
|
|
num_classes_ = 0;
|
|
}
|
|
|
|
~ClassPruner() {
|
|
delete []class_count_;
|
|
delete []norm_count_;
|
|
delete []sort_key_;
|
|
delete []sort_index_;
|
|
}
|
|
|
|
/// Computes the scores for every class in the character set, by summing the
|
|
/// weights for each feature and stores the sums internally in class_count_.
|
|
void ComputeScores(const INT_TEMPLATES_STRUCT* int_templates,
|
|
int num_features, const INT_FEATURE_STRUCT* features) {
|
|
num_features_ = num_features;
|
|
int num_pruners = int_templates->NumClassPruners;
|
|
for (int f = 0; f < num_features; ++f) {
|
|
const INT_FEATURE_STRUCT* feature = &features[f];
|
|
// Quantize the feature to NUM_CP_BUCKETS*NUM_CP_BUCKETS*NUM_CP_BUCKETS.
|
|
int x = feature->X * NUM_CP_BUCKETS >> 8;
|
|
int y = feature->Y * NUM_CP_BUCKETS >> 8;
|
|
int theta = feature->Theta * NUM_CP_BUCKETS >> 8;
|
|
int class_id = 0;
|
|
// Each CLASS_PRUNER_STRUCT only covers CLASSES_PER_CP(32) classes, so
|
|
// we need a collection of them, indexed by pruner_set.
|
|
for (int pruner_set = 0; pruner_set < num_pruners; ++pruner_set) {
|
|
// Look up quantized feature in a 3-D array, an array of weights for
|
|
// each class.
|
|
const uinT32* pruner_word_ptr =
|
|
int_templates->ClassPruners[pruner_set]->p[x][y][theta];
|
|
for (int word = 0; word < WERDS_PER_CP_VECTOR; ++word) {
|
|
uinT32 pruner_word = *pruner_word_ptr++;
|
|
// This inner loop is unrolled to speed up the ClassPruner.
|
|
// Currently gcc would not unroll it unless it is set to O3
|
|
// level of optimization or -funroll-loops is specified.
|
|
/*
|
|
uinT32 class_mask = (1 << NUM_BITS_PER_CLASS) - 1;
|
|
for (int bit = 0; bit < BITS_PER_WERD/NUM_BITS_PER_CLASS; bit++) {
|
|
class_count_[class_id++] += pruner_word & class_mask;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
}
|
|
*/
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Adjusts the scores according to the number of expected features. Used
|
|
/// in lieu of a constant bias, this penalizes classes that expect more
|
|
/// features than there are present. Thus an actual c will score higher for c
|
|
/// than e, even though almost all the features match e as well as c, because
|
|
/// e expects more features to be present.
|
|
void AdjustForExpectedNumFeatures(const uinT16* expected_num_features,
|
|
int cutoff_strength) {
|
|
for (int class_id = 0; class_id < max_classes_; ++class_id) {
|
|
if (num_features_ < expected_num_features[class_id]) {
|
|
int deficit = expected_num_features[class_id] - num_features_;
|
|
class_count_[class_id] -= class_count_[class_id] * deficit /
|
|
(num_features_ * cutoff_strength + deficit);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Zeros the scores for classes disabled in the unicharset.
|
|
/// Implements the black-list to recognize a subset of the character set.
|
|
void DisableDisabledClasses(const UNICHARSET& unicharset) {
|
|
for (int class_id = 0; class_id < max_classes_; ++class_id) {
|
|
if (!unicharset.get_enabled(class_id))
|
|
class_count_[class_id] = 0; // This char is disabled!
|
|
}
|
|
}
|
|
|
|
/** Zeros the scores of fragments. */
|
|
void DisableFragments(const UNICHARSET& unicharset) {
|
|
for (int class_id = 0; class_id < max_classes_; ++class_id) {
|
|
// Do not include character fragments in the class pruner
|
|
// results if disable_character_fragments is true.
|
|
if (unicharset.get_fragment(class_id)) {
|
|
class_count_[class_id] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Normalizes the counts for xheight, putting the normalized result in
|
|
/// norm_count_. Applies a simple subtractive penalty for incorrect vertical
|
|
/// position provided by the normalization_factors array, indexed by
|
|
/// character class, and scaled by the norm_multiplier.
|
|
void NormalizeForXheight(int norm_multiplier,
|
|
const uinT8* normalization_factors) {
|
|
for (int class_id = 0; class_id < max_classes_; class_id++) {
|
|
norm_count_[class_id] = class_count_[class_id] -
|
|
((norm_multiplier * normalization_factors[class_id]) >> 8);
|
|
}
|
|
}
|
|
|
|
/** The nop normalization copies the class_count_ array to norm_count_. */
|
|
void NoNormalization() {
|
|
for (int class_id = 0; class_id < max_classes_; class_id++) {
|
|
norm_count_[class_id] = class_count_[class_id];
|
|
}
|
|
}
|
|
|
|
/// Prunes the classes using <the maximum count> * pruning_factor/256 as a
|
|
/// threshold for keeping classes. If max_of_non_fragments, then ignore
|
|
/// fragments in computing the maximum count.
|
|
void PruneAndSort(int pruning_factor, int keep_this,
|
|
bool max_of_non_fragments, const UNICHARSET& unicharset) {
|
|
int max_count = 0;
|
|
for (int c = 0; c < max_classes_; ++c) {
|
|
if (norm_count_[c] > max_count &&
|
|
// This additional check is added in order to ensure that
|
|
// the classifier will return at least one non-fragmented
|
|
// character match.
|
|
// TODO(daria): verify that this helps accuracy and does not
|
|
// hurt performance.
|
|
(!max_of_non_fragments || !unicharset.get_fragment(c))) {
|
|
max_count = norm_count_[c];
|
|
}
|
|
}
|
|
// Prune Classes.
|
|
pruning_threshold_ = (max_count * pruning_factor) >> 8;
|
|
// Select Classes.
|
|
if (pruning_threshold_ < 1)
|
|
pruning_threshold_ = 1;
|
|
num_classes_ = 0;
|
|
for (int class_id = 0; class_id < max_classes_; class_id++) {
|
|
if (norm_count_[class_id] >= pruning_threshold_ ||
|
|
class_id == keep_this) {
|
|
++num_classes_;
|
|
sort_index_[num_classes_] = class_id;
|
|
sort_key_[num_classes_] = norm_count_[class_id];
|
|
}
|
|
}
|
|
|
|
// Sort Classes using Heapsort Algorithm.
|
|
if (num_classes_ > 1)
|
|
HeapSort(num_classes_, sort_key_, sort_index_);
|
|
}
|
|
|
|
/** Prints debug info on the class pruner matches for the pruned classes only.
|
|
*/
|
|
void DebugMatch(const Classify& classify,
|
|
const INT_TEMPLATES_STRUCT* int_templates,
|
|
const INT_FEATURE_STRUCT* features) const {
|
|
int num_pruners = int_templates->NumClassPruners;
|
|
int max_num_classes = int_templates->NumClasses;
|
|
for (int f = 0; f < num_features_; ++f) {
|
|
const INT_FEATURE_STRUCT* feature = &features[f];
|
|
tprintf("F=%3d(%d,%d,%d),", f, feature->X, feature->Y, feature->Theta);
|
|
// Quantize the feature to NUM_CP_BUCKETS*NUM_CP_BUCKETS*NUM_CP_BUCKETS.
|
|
int x = feature->X * NUM_CP_BUCKETS >> 8;
|
|
int y = feature->Y * NUM_CP_BUCKETS >> 8;
|
|
int theta = feature->Theta * NUM_CP_BUCKETS >> 8;
|
|
int class_id = 0;
|
|
for (int pruner_set = 0; pruner_set < num_pruners; ++pruner_set) {
|
|
// Look up quantized feature in a 3-D array, an array of weights for
|
|
// each class.
|
|
const uinT32* pruner_word_ptr =
|
|
int_templates->ClassPruners[pruner_set]->p[x][y][theta];
|
|
for (int word = 0; word < WERDS_PER_CP_VECTOR; ++word) {
|
|
uinT32 pruner_word = *pruner_word_ptr++;
|
|
for (int word_class = 0; word_class < 16 &&
|
|
class_id < max_num_classes; ++word_class, ++class_id) {
|
|
if (norm_count_[class_id] >= pruning_threshold_) {
|
|
tprintf(" %s=%d,",
|
|
classify.ClassIDToDebugStr(int_templates,
|
|
class_id, 0).string(),
|
|
pruner_word & CLASS_PRUNER_CLASS_MASK);
|
|
}
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
}
|
|
}
|
|
tprintf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Prints a summary of the pruner result. */
|
|
void SummarizeResult(const Classify& classify,
|
|
const INT_TEMPLATES_STRUCT* int_templates,
|
|
const uinT16* expected_num_features,
|
|
int norm_multiplier,
|
|
const uinT8* normalization_factors) const {
|
|
tprintf("CP:%d classes, %d features:\n", num_classes_, num_features_);
|
|
for (int i = 0; i < num_classes_; ++i) {
|
|
int class_id = sort_index_[num_classes_ - i];
|
|
STRING class_string = classify.ClassIDToDebugStr(int_templates,
|
|
class_id, 0);
|
|
tprintf("%s:Initial=%d, E=%d, Xht-adj=%d, N=%d, Rat=%.2f\n",
|
|
class_string.string(),
|
|
class_count_[class_id],
|
|
expected_num_features[class_id],
|
|
(norm_multiplier * normalization_factors[class_id]) >> 8,
|
|
sort_key_[num_classes_ - i],
|
|
100.0 - 100.0 * sort_key_[num_classes_ - i] /
|
|
(CLASS_PRUNER_CLASS_MASK * num_features_));
|
|
}
|
|
}
|
|
|
|
/// Copies the pruned, sorted classes into the output results and returns
|
|
/// the number of classes.
|
|
int SetupResults(GenericVector<CP_RESULT_STRUCT>* results) const {
|
|
CP_RESULT_STRUCT empty;
|
|
results->init_to_size(num_classes_, empty);
|
|
for (int c = 0; c < num_classes_; ++c) {
|
|
(*results)[c].Class = sort_index_[num_classes_ - c];
|
|
(*results)[c].Rating = 1.0 - sort_key_[num_classes_ - c] /
|
|
(static_cast<float>(CLASS_PRUNER_CLASS_MASK) * num_features_);
|
|
}
|
|
return num_classes_;
|
|
}
|
|
|
|
private:
|
|
/** Array[rounded_classes_] of initial counts for each class. */
|
|
int *class_count_;
|
|
/// Array[rounded_classes_] of modified counts for each class after
|
|
/// normalizing for expected number of features, disabled classes, fragments,
|
|
/// and xheights.
|
|
int *norm_count_;
|
|
/** Array[rounded_classes_ +1] of pruned counts that gets sorted */
|
|
int *sort_key_;
|
|
/** Array[rounded_classes_ +1] of classes corresponding to sort_key_. */
|
|
int *sort_index_;
|
|
/** Number of classes in this class pruner. */
|
|
int max_classes_;
|
|
/** Rounded up number of classes used for array sizes. */
|
|
int rounded_classes_;
|
|
/** Threshold count applied to prune classes. */
|
|
int pruning_threshold_;
|
|
/** The number of features used to compute the scores. */
|
|
int num_features_;
|
|
/** Final number of pruned classes. */
|
|
int num_classes_;
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Public Code
|
|
----------------------------------------------------------------------------*/
|
|
/**
|
|
* Runs the class pruner from int_templates on the given features, returning
|
|
* the number of classes output in results.
|
|
* @param int_templates Class pruner tables
|
|
* @param num_features Number of features in blob
|
|
* @param features Array of features
|
|
* @param normalization_factors Array of fudge factors from blob
|
|
* normalization process (by CLASS_INDEX)
|
|
* @param expected_num_features Array of expected number of features
|
|
* for each class (by CLASS_INDEX)
|
|
* @param results Sorted Array of pruned classes. Must be an
|
|
* array of size at least
|
|
* int_templates->NumClasses.
|
|
* @param keep_this
|
|
*/
|
|
int Classify::PruneClasses(const INT_TEMPLATES_STRUCT* int_templates,
|
|
int num_features, int keep_this,
|
|
const INT_FEATURE_STRUCT* features,
|
|
const uinT8* normalization_factors,
|
|
const uinT16* expected_num_features,
|
|
GenericVector<CP_RESULT_STRUCT>* results) {
|
|
ClassPruner pruner(int_templates->NumClasses);
|
|
// Compute initial match scores for all classes.
|
|
pruner.ComputeScores(int_templates, num_features, features);
|
|
// Adjust match scores for number of expected features.
|
|
pruner.AdjustForExpectedNumFeatures(expected_num_features,
|
|
classify_cp_cutoff_strength);
|
|
// Apply disabled classes in unicharset - only works without a shape_table.
|
|
if (shape_table_ == NULL)
|
|
pruner.DisableDisabledClasses(unicharset);
|
|
// If fragments are disabled, remove them, also only without a shape table.
|
|
if (disable_character_fragments && shape_table_ == NULL)
|
|
pruner.DisableFragments(unicharset);
|
|
|
|
// If we have good x-heights, apply the given normalization factors.
|
|
if (normalization_factors != NULL) {
|
|
pruner.NormalizeForXheight(classify_class_pruner_multiplier,
|
|
normalization_factors);
|
|
} else {
|
|
pruner.NoNormalization();
|
|
}
|
|
// Do the actual pruning and sort the short-list.
|
|
pruner.PruneAndSort(classify_class_pruner_threshold, keep_this,
|
|
shape_table_ == NULL, unicharset);
|
|
|
|
if (classify_debug_level > 2) {
|
|
pruner.DebugMatch(*this, int_templates, features);
|
|
}
|
|
if (classify_debug_level > 1) {
|
|
pruner.SummarizeResult(*this, int_templates, expected_num_features,
|
|
classify_class_pruner_multiplier,
|
|
normalization_factors);
|
|
}
|
|
// Convert to the expected output format.
|
|
return pruner.SetupResults(results);
|
|
}
|
|
|
|
} // namespace tesseract
|
|
|
|
/**
|
|
* IntegerMatcher returns the best configuration and rating
|
|
* for a single class. The class matched against is determined
|
|
* by the uniqueness of the ClassTemplate parameter. The
|
|
* best rating and its associated configuration are returned.
|
|
*
|
|
* Globals:
|
|
* - local_matcher_multiplier_ Normalization factor multiplier
|
|
* param ClassTemplate Prototypes & tables for a class
|
|
* param BlobLength Length of unormalized blob
|
|
* param NumFeatures Number of features in blob
|
|
* param Features Array of features
|
|
* param NormalizationFactor Fudge factor from blob normalization process
|
|
* param Result Class rating & configuration: (0.0 -> 1.0), 0=bad, 1=good
|
|
* param Debug Debugger flag: 1=debugger on
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Tue Feb 19 16:36:23 MST 1991, RWM, Created.
|
|
*/
|
|
void IntegerMatcher::Match(INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
inT16 NumFeatures,
|
|
const INT_FEATURE_STRUCT* Features,
|
|
UnicharRating* Result,
|
|
int AdaptFeatureThreshold,
|
|
int Debug,
|
|
bool SeparateDebugWindows) {
|
|
ScratchEvidence *tables = new ScratchEvidence();
|
|
int Feature;
|
|
int BestMatch;
|
|
|
|
if (MatchDebuggingOn (Debug))
|
|
cprintf ("Integer Matcher -------------------------------------------\n");
|
|
|
|
tables->Clear(ClassTemplate);
|
|
Result->feature_misses = 0;
|
|
|
|
for (Feature = 0; Feature < NumFeatures; Feature++) {
|
|
int csum = UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask,
|
|
Feature, &Features[Feature],
|
|
tables, Debug);
|
|
// Count features that were missed over all configs.
|
|
if (csum == 0)
|
|
++Result->feature_misses;
|
|
}
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug)) {
|
|
DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables,
|
|
NumFeatures, Debug);
|
|
}
|
|
|
|
if (DisplayProtoMatchesOn(Debug)) {
|
|
DisplayProtoDebugInfo(ClassTemplate, ProtoMask, ConfigMask,
|
|
*tables, SeparateDebugWindows);
|
|
}
|
|
|
|
if (DisplayFeatureMatchesOn(Debug)) {
|
|
DisplayFeatureDebugInfo(ClassTemplate, ProtoMask, ConfigMask, NumFeatures,
|
|
Features, AdaptFeatureThreshold, Debug,
|
|
SeparateDebugWindows);
|
|
}
|
|
#endif
|
|
|
|
tables->UpdateSumOfProtoEvidences(ClassTemplate, ConfigMask, NumFeatures);
|
|
tables->NormalizeSums(ClassTemplate, NumFeatures, NumFeatures);
|
|
|
|
BestMatch = FindBestMatch(ClassTemplate, *tables, Result);
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (PrintMatchSummaryOn(Debug))
|
|
Result->Print();
|
|
|
|
if (MatchDebuggingOn(Debug))
|
|
cprintf("Match Complete --------------------------------------------\n");
|
|
#endif
|
|
|
|
delete tables;
|
|
}
|
|
|
|
/**
|
|
* FindGoodProtos finds all protos whose normalized proto-evidence
|
|
* exceed classify_adapt_proto_thresh. The list is ordered by increasing
|
|
* proto id number.
|
|
*
|
|
* Globals:
|
|
* - local_matcher_multiplier_ Normalization factor multiplier
|
|
* param ClassTemplate Prototypes & tables for a class
|
|
* param ProtoMask AND Mask for proto word
|
|
* param ConfigMask AND Mask for config word
|
|
* param BlobLength Length of unormalized blob
|
|
* param NumFeatures Number of features in blob
|
|
* param Features Array of features
|
|
* param ProtoArray Array of good protos
|
|
* param AdaptProtoThreshold Threshold for good protos
|
|
* param Debug Debugger flag: 1=debugger on
|
|
* @return Number of good protos in ProtoArray.
|
|
* @note Exceptions: none
|
|
* @note History: Tue Mar 12 17:09:26 MST 1991, RWM, Created
|
|
*/
|
|
int IntegerMatcher::FindGoodProtos(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
uinT16 BlobLength,
|
|
inT16 NumFeatures,
|
|
INT_FEATURE_ARRAY Features,
|
|
PROTO_ID *ProtoArray,
|
|
int AdaptProtoThreshold,
|
|
int Debug) {
|
|
ScratchEvidence *tables = new ScratchEvidence();
|
|
int NumGoodProtos = 0;
|
|
|
|
/* DEBUG opening heading */
|
|
if (MatchDebuggingOn (Debug))
|
|
cprintf
|
|
("Find Good Protos -------------------------------------------\n");
|
|
|
|
tables->Clear(ClassTemplate);
|
|
|
|
for (int Feature = 0; Feature < NumFeatures; Feature++)
|
|
UpdateTablesForFeature(
|
|
ClassTemplate, ProtoMask, ConfigMask, Feature, &(Features[Feature]),
|
|
tables, Debug);
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (PrintProtoMatchesOn (Debug) || PrintMatchSummaryOn (Debug))
|
|
DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables,
|
|
NumFeatures, Debug);
|
|
#endif
|
|
|
|
/* Average Proto Evidences & Find Good Protos */
|
|
for (int proto = 0; proto < ClassTemplate->NumProtos; proto++) {
|
|
/* Compute Average for Actual Proto */
|
|
int Temp = 0;
|
|
for (int i = 0; i < ClassTemplate->ProtoLengths[proto]; i++)
|
|
Temp += tables->proto_evidence_[proto][i];
|
|
|
|
Temp /= ClassTemplate->ProtoLengths[proto];
|
|
|
|
/* Find Good Protos */
|
|
if (Temp >= AdaptProtoThreshold) {
|
|
*ProtoArray = proto;
|
|
ProtoArray++;
|
|
NumGoodProtos++;
|
|
}
|
|
}
|
|
|
|
if (MatchDebuggingOn (Debug))
|
|
cprintf ("Match Complete --------------------------------------------\n");
|
|
delete tables;
|
|
|
|
return NumGoodProtos;
|
|
}
|
|
|
|
/**
|
|
* FindBadFeatures finds all features with maximum feature-evidence <
|
|
* AdaptFeatureThresh. The list is ordered by increasing feature number.
|
|
* @param ClassTemplate Prototypes & tables for a class
|
|
* @param ProtoMask AND Mask for proto word
|
|
* @param ConfigMask AND Mask for config word
|
|
* @param BlobLength Length of unormalized blob
|
|
* @param NumFeatures Number of features in blob
|
|
* @param Features Array of features
|
|
* @param FeatureArray Array of bad features
|
|
* @param AdaptFeatureThreshold Threshold for bad features
|
|
* @param Debug Debugger flag: 1=debugger on
|
|
* @return Number of bad features in FeatureArray.
|
|
* @note History: Tue Mar 12 17:09:26 MST 1991, RWM, Created
|
|
*/
|
|
int IntegerMatcher::FindBadFeatures(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
uinT16 BlobLength,
|
|
inT16 NumFeatures,
|
|
INT_FEATURE_ARRAY Features,
|
|
FEATURE_ID *FeatureArray,
|
|
int AdaptFeatureThreshold,
|
|
int Debug) {
|
|
ScratchEvidence *tables = new ScratchEvidence();
|
|
int NumBadFeatures = 0;
|
|
|
|
/* DEBUG opening heading */
|
|
if (MatchDebuggingOn(Debug))
|
|
cprintf("Find Bad Features -------------------------------------------\n");
|
|
|
|
tables->Clear(ClassTemplate);
|
|
|
|
for (int Feature = 0; Feature < NumFeatures; Feature++) {
|
|
UpdateTablesForFeature(
|
|
ClassTemplate, ProtoMask, ConfigMask, Feature, &Features[Feature],
|
|
tables, Debug);
|
|
|
|
/* Find Best Evidence for Current Feature */
|
|
int best = 0;
|
|
for (int i = 0; i < ClassTemplate->NumConfigs; i++)
|
|
if (tables->feature_evidence_[i] > best)
|
|
best = tables->feature_evidence_[i];
|
|
|
|
/* Find Bad Features */
|
|
if (best < AdaptFeatureThreshold) {
|
|
*FeatureArray = Feature;
|
|
FeatureArray++;
|
|
NumBadFeatures++;
|
|
}
|
|
}
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug))
|
|
DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables,
|
|
NumFeatures, Debug);
|
|
#endif
|
|
|
|
if (MatchDebuggingOn(Debug))
|
|
cprintf("Match Complete --------------------------------------------\n");
|
|
|
|
delete tables;
|
|
return NumBadFeatures;
|
|
}
|
|
|
|
|
|
void IntegerMatcher::Init(tesseract::IntParam *classify_debug_level) {
|
|
classify_debug_level_ = classify_debug_level;
|
|
|
|
/* Initialize table for evidence to similarity lookup */
|
|
for (int i = 0; i < SE_TABLE_SIZE; i++) {
|
|
uinT32 IntSimilarity = i << (27 - SE_TABLE_BITS);
|
|
double Similarity = ((double) IntSimilarity) / 65536.0 / 65536.0;
|
|
double evidence = Similarity / kSimilarityCenter;
|
|
evidence = 255.0 / (evidence * evidence + 1.0);
|
|
|
|
if (kSEExponentialMultiplier > 0.0) {
|
|
double scale = 1.0 - exp(-kSEExponentialMultiplier) *
|
|
exp(kSEExponentialMultiplier * ((double) i / SE_TABLE_SIZE));
|
|
evidence *= ClipToRange(scale, 0.0, 1.0);
|
|
}
|
|
|
|
similarity_evidence_table_[i] = (uinT8) (evidence + 0.5);
|
|
}
|
|
|
|
/* Initialize evidence computation variables */
|
|
evidence_table_mask_ =
|
|
((1 << kEvidenceTableBits) - 1) << (9 - kEvidenceTableBits);
|
|
mult_trunc_shift_bits_ = (14 - kIntEvidenceTruncBits);
|
|
table_trunc_shift_bits_ = (27 - SE_TABLE_BITS - (mult_trunc_shift_bits_ << 1));
|
|
evidence_mult_mask_ = ((1 << kIntEvidenceTruncBits) - 1);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Private Code
|
|
----------------------------------------------------------------------------*/
|
|
void ScratchEvidence::Clear(const INT_CLASS class_template) {
|
|
memset(sum_feature_evidence_, 0,
|
|
class_template->NumConfigs * sizeof(sum_feature_evidence_[0]));
|
|
memset(proto_evidence_, 0,
|
|
class_template->NumProtos * sizeof(proto_evidence_[0]));
|
|
}
|
|
|
|
void ScratchEvidence::ClearFeatureEvidence(const INT_CLASS class_template) {
|
|
memset(feature_evidence_, 0,
|
|
class_template->NumConfigs * sizeof(feature_evidence_[0]));
|
|
}
|
|
|
|
/**
|
|
* Print debugging information for Configuations
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
|
|
*/
|
|
void IMDebugConfiguration(int FeatureNum,
|
|
uinT16 ActualProtoNum,
|
|
uinT8 Evidence,
|
|
BIT_VECTOR ConfigMask,
|
|
uinT32 ConfigWord) {
|
|
cprintf ("F = %3d, P = %3d, E = %3d, Configs = ",
|
|
FeatureNum, (int) ActualProtoNum, (int) Evidence);
|
|
while (ConfigWord) {
|
|
if (ConfigWord & 1)
|
|
cprintf ("1");
|
|
else
|
|
cprintf ("0");
|
|
ConfigWord >>= 1;
|
|
}
|
|
cprintf ("\n");
|
|
}
|
|
|
|
/**
|
|
* Print debugging information for Configuations
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
|
|
*/
|
|
void IMDebugConfigurationSum(int FeatureNum,
|
|
uinT8 *FeatureEvidence,
|
|
inT32 ConfigCount) {
|
|
cprintf("F=%3d, C=", FeatureNum);
|
|
for (int ConfigNum = 0; ConfigNum < ConfigCount; ConfigNum++) {
|
|
cprintf("%4d", FeatureEvidence[ConfigNum]);
|
|
}
|
|
cprintf("\n");
|
|
}
|
|
|
|
/**
|
|
* For the given feature: prune protos, compute evidence,
|
|
* update Feature Evidence, Proto Evidence, and Sum of Feature
|
|
* Evidence tables.
|
|
* @param ClassTemplate Prototypes & tables for a class
|
|
* @param FeatureNum Current feature number (for DEBUG only)
|
|
* @param Feature Pointer to a feature struct
|
|
* @param tables Evidence tables
|
|
* @param Debug Debugger flag: 1=debugger on
|
|
* @return none
|
|
*/
|
|
int IntegerMatcher::UpdateTablesForFeature(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
int FeatureNum,
|
|
const INT_FEATURE_STRUCT* Feature,
|
|
ScratchEvidence *tables,
|
|
int Debug) {
|
|
uinT32 ConfigWord;
|
|
uinT32 ProtoWord;
|
|
uinT32 ProtoNum;
|
|
uinT32 ActualProtoNum;
|
|
uinT8 proto_byte;
|
|
inT32 proto_word_offset;
|
|
inT32 proto_offset;
|
|
uinT8 config_byte;
|
|
inT32 config_offset;
|
|
PROTO_SET ProtoSet;
|
|
uinT32 *ProtoPrunerPtr;
|
|
INT_PROTO Proto;
|
|
int ProtoSetIndex;
|
|
uinT8 Evidence;
|
|
uinT32 XFeatureAddress;
|
|
uinT32 YFeatureAddress;
|
|
uinT32 ThetaFeatureAddress;
|
|
uinT8* UINT8Pointer;
|
|
int ProtoIndex;
|
|
uinT8 Temp;
|
|
int* IntPointer;
|
|
int ConfigNum;
|
|
inT32 M3;
|
|
inT32 A3;
|
|
uinT32 A4;
|
|
|
|
tables->ClearFeatureEvidence(ClassTemplate);
|
|
|
|
/* Precompute Feature Address offset for Proto Pruning */
|
|
XFeatureAddress = ((Feature->X >> 2) << 1);
|
|
YFeatureAddress = (NUM_PP_BUCKETS << 1) + ((Feature->Y >> 2) << 1);
|
|
ThetaFeatureAddress = (NUM_PP_BUCKETS << 2) + ((Feature->Theta >> 2) << 1);
|
|
|
|
for (ProtoSetIndex = 0, ActualProtoNum = 0;
|
|
ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
|
|
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
|
|
ProtoPrunerPtr = (uinT32 *) ((*ProtoSet).ProtoPruner);
|
|
for (ProtoNum = 0; ProtoNum < PROTOS_PER_PROTO_SET;
|
|
ProtoNum += (PROTOS_PER_PROTO_SET >> 1), ActualProtoNum +=
|
|
(PROTOS_PER_PROTO_SET >> 1), ProtoMask++, ProtoPrunerPtr++) {
|
|
/* Prune Protos of current Proto Set */
|
|
ProtoWord = *(ProtoPrunerPtr + XFeatureAddress);
|
|
ProtoWord &= *(ProtoPrunerPtr + YFeatureAddress);
|
|
ProtoWord &= *(ProtoPrunerPtr + ThetaFeatureAddress);
|
|
ProtoWord &= *ProtoMask;
|
|
|
|
if (ProtoWord != 0) {
|
|
proto_byte = ProtoWord & 0xff;
|
|
ProtoWord >>= 8;
|
|
proto_word_offset = 0;
|
|
while (ProtoWord != 0 || proto_byte != 0) {
|
|
while (proto_byte == 0) {
|
|
proto_byte = ProtoWord & 0xff;
|
|
ProtoWord >>= 8;
|
|
proto_word_offset += 8;
|
|
}
|
|
proto_offset = offset_table[proto_byte] + proto_word_offset;
|
|
proto_byte = next_table[proto_byte];
|
|
Proto = &(ProtoSet->Protos[ProtoNum + proto_offset]);
|
|
ConfigWord = Proto->Configs[0];
|
|
A3 = (((Proto->A * (Feature->X - 128)) << 1)
|
|
- (Proto->B * (Feature->Y - 128)) + (Proto->C << 9));
|
|
M3 =
|
|
(((inT8) (Feature->Theta - Proto->Angle)) * kIntThetaFudge) << 1;
|
|
|
|
if (A3 < 0)
|
|
A3 = ~A3;
|
|
if (M3 < 0)
|
|
M3 = ~M3;
|
|
A3 >>= mult_trunc_shift_bits_;
|
|
M3 >>= mult_trunc_shift_bits_;
|
|
if (A3 > evidence_mult_mask_)
|
|
A3 = evidence_mult_mask_;
|
|
if (M3 > evidence_mult_mask_)
|
|
M3 = evidence_mult_mask_;
|
|
|
|
A4 = (A3 * A3) + (M3 * M3);
|
|
A4 >>= table_trunc_shift_bits_;
|
|
if (A4 > evidence_table_mask_)
|
|
Evidence = 0;
|
|
else
|
|
Evidence = similarity_evidence_table_[A4];
|
|
|
|
if (PrintFeatureMatchesOn (Debug))
|
|
IMDebugConfiguration (FeatureNum,
|
|
ActualProtoNum + proto_offset,
|
|
Evidence, ConfigMask, ConfigWord);
|
|
|
|
ConfigWord &= *ConfigMask;
|
|
|
|
UINT8Pointer = tables->feature_evidence_ - 8;
|
|
config_byte = 0;
|
|
while (ConfigWord != 0 || config_byte != 0) {
|
|
while (config_byte == 0) {
|
|
config_byte = ConfigWord & 0xff;
|
|
ConfigWord >>= 8;
|
|
UINT8Pointer += 8;
|
|
}
|
|
config_offset = offset_table[config_byte];
|
|
config_byte = next_table[config_byte];
|
|
if (Evidence > UINT8Pointer[config_offset])
|
|
UINT8Pointer[config_offset] = Evidence;
|
|
}
|
|
|
|
UINT8Pointer =
|
|
&(tables->proto_evidence_[ActualProtoNum + proto_offset][0]);
|
|
for (ProtoIndex =
|
|
ClassTemplate->ProtoLengths[ActualProtoNum + proto_offset];
|
|
ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) {
|
|
if (Evidence > *UINT8Pointer) {
|
|
Temp = *UINT8Pointer;
|
|
*UINT8Pointer = Evidence;
|
|
Evidence = Temp;
|
|
}
|
|
else if (Evidence == 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PrintFeatureMatchesOn(Debug)) {
|
|
IMDebugConfigurationSum(FeatureNum, tables->feature_evidence_,
|
|
ClassTemplate->NumConfigs);
|
|
}
|
|
|
|
IntPointer = tables->sum_feature_evidence_;
|
|
UINT8Pointer = tables->feature_evidence_;
|
|
int SumOverConfigs = 0;
|
|
for (ConfigNum = ClassTemplate->NumConfigs; ConfigNum > 0; ConfigNum--) {
|
|
int evidence = *UINT8Pointer++;
|
|
SumOverConfigs += evidence;
|
|
*IntPointer++ += evidence;
|
|
}
|
|
return SumOverConfigs;
|
|
}
|
|
|
|
/**
|
|
* Print debugging information for Configuations
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
|
|
*/
|
|
#ifndef GRAPHICS_DISABLED
|
|
void IntegerMatcher::DebugFeatureProtoError(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
const ScratchEvidence& tables,
|
|
inT16 NumFeatures,
|
|
int Debug) {
|
|
FLOAT32 ProtoConfigs[MAX_NUM_CONFIGS];
|
|
int ConfigNum;
|
|
uinT32 ConfigWord;
|
|
int ProtoSetIndex;
|
|
uinT16 ProtoNum;
|
|
uinT8 ProtoWordNum;
|
|
PROTO_SET ProtoSet;
|
|
uinT16 ActualProtoNum;
|
|
|
|
if (PrintMatchSummaryOn(Debug)) {
|
|
cprintf("Configuration Mask:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++)
|
|
cprintf("%1d", (((*ConfigMask) >> ConfigNum) & 1));
|
|
cprintf("\n");
|
|
|
|
cprintf("Feature Error for Configurations:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
|
|
cprintf(
|
|
" %5.1f",
|
|
100.0 * (1.0 -
|
|
(FLOAT32) tables.sum_feature_evidence_[ConfigNum]
|
|
/ NumFeatures / 256.0));
|
|
}
|
|
cprintf("\n\n\n");
|
|
}
|
|
|
|
if (PrintMatchSummaryOn (Debug)) {
|
|
cprintf ("Proto Mask:\n");
|
|
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
|
|
ProtoSetIndex++) {
|
|
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
|
|
for (ProtoWordNum = 0; ProtoWordNum < 2;
|
|
ProtoWordNum++, ProtoMask++) {
|
|
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
|
|
for (ProtoNum = 0;
|
|
((ProtoNum < (PROTOS_PER_PROTO_SET >> 1))
|
|
&& (ActualProtoNum < ClassTemplate->NumProtos));
|
|
ProtoNum++, ActualProtoNum++)
|
|
cprintf ("%1d", (((*ProtoMask) >> ProtoNum) & 1));
|
|
cprintf ("\n");
|
|
}
|
|
}
|
|
cprintf ("\n");
|
|
}
|
|
|
|
for (int i = 0; i < ClassTemplate->NumConfigs; i++)
|
|
ProtoConfigs[i] = 0;
|
|
|
|
if (PrintProtoMatchesOn (Debug)) {
|
|
cprintf ("Proto Evidence:\n");
|
|
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
|
|
ProtoSetIndex++) {
|
|
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
|
|
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
|
|
for (ProtoNum = 0;
|
|
((ProtoNum < PROTOS_PER_PROTO_SET) &&
|
|
(ActualProtoNum < ClassTemplate->NumProtos));
|
|
ProtoNum++, ActualProtoNum++) {
|
|
cprintf ("P %3d =", ActualProtoNum);
|
|
int temp = 0;
|
|
for (int j = 0; j < ClassTemplate->ProtoLengths[ActualProtoNum]; j++) {
|
|
uinT8 data = tables.proto_evidence_[ActualProtoNum][j];
|
|
cprintf(" %d", data);
|
|
temp += data;
|
|
}
|
|
|
|
cprintf(" = %6.4f%%\n",
|
|
temp / 256.0 / ClassTemplate->ProtoLengths[ActualProtoNum]);
|
|
|
|
ConfigWord = ProtoSet->Protos[ProtoNum].Configs[0];
|
|
ConfigNum = 0;
|
|
while (ConfigWord) {
|
|
cprintf ("%5d", ConfigWord & 1 ? temp : 0);
|
|
if (ConfigWord & 1)
|
|
ProtoConfigs[ConfigNum] += temp;
|
|
ConfigNum++;
|
|
ConfigWord >>= 1;
|
|
}
|
|
cprintf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PrintMatchSummaryOn (Debug)) {
|
|
cprintf ("Proto Error for Configurations:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++)
|
|
cprintf (" %5.1f",
|
|
100.0 * (1.0 -
|
|
ProtoConfigs[ConfigNum] /
|
|
ClassTemplate->ConfigLengths[ConfigNum] / 256.0));
|
|
cprintf ("\n\n");
|
|
}
|
|
|
|
if (PrintProtoMatchesOn (Debug)) {
|
|
cprintf ("Proto Sum for Configurations:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++)
|
|
cprintf (" %4.1f", ProtoConfigs[ConfigNum] / 256.0);
|
|
cprintf ("\n\n");
|
|
|
|
cprintf ("Proto Length for Configurations:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++)
|
|
cprintf (" %4.1f",
|
|
(float) ClassTemplate->ConfigLengths[ConfigNum]);
|
|
cprintf ("\n\n");
|
|
}
|
|
|
|
}
|
|
|
|
void IntegerMatcher::DisplayProtoDebugInfo(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
const ScratchEvidence& tables,
|
|
bool SeparateDebugWindows) {
|
|
uinT16 ProtoNum;
|
|
uinT16 ActualProtoNum;
|
|
PROTO_SET ProtoSet;
|
|
int ProtoSetIndex;
|
|
|
|
InitIntMatchWindowIfReqd();
|
|
if (SeparateDebugWindows) {
|
|
InitFeatureDisplayWindowIfReqd();
|
|
InitProtoDisplayWindowIfReqd();
|
|
}
|
|
|
|
|
|
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
|
|
ProtoSetIndex++) {
|
|
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
|
|
ActualProtoNum = ProtoSetIndex * PROTOS_PER_PROTO_SET;
|
|
for (ProtoNum = 0;
|
|
((ProtoNum < PROTOS_PER_PROTO_SET) &&
|
|
(ActualProtoNum < ClassTemplate->NumProtos));
|
|
ProtoNum++, ActualProtoNum++) {
|
|
/* Compute Average for Actual Proto */
|
|
int temp = 0;
|
|
for (int i = 0; i < ClassTemplate->ProtoLengths[ActualProtoNum]; i++)
|
|
temp += tables.proto_evidence_[ActualProtoNum][i];
|
|
|
|
temp /= ClassTemplate->ProtoLengths[ActualProtoNum];
|
|
|
|
if ((ProtoSet->Protos[ProtoNum]).Configs[0] & (*ConfigMask)) {
|
|
DisplayIntProto(ClassTemplate, ActualProtoNum, temp / 255.0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void IntegerMatcher::DisplayFeatureDebugInfo(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
inT16 NumFeatures,
|
|
const INT_FEATURE_STRUCT* Features,
|
|
int AdaptFeatureThreshold,
|
|
int Debug,
|
|
bool SeparateDebugWindows) {
|
|
ScratchEvidence *tables = new ScratchEvidence();
|
|
|
|
tables->Clear(ClassTemplate);
|
|
|
|
InitIntMatchWindowIfReqd();
|
|
if (SeparateDebugWindows) {
|
|
InitFeatureDisplayWindowIfReqd();
|
|
InitProtoDisplayWindowIfReqd();
|
|
}
|
|
|
|
for (int Feature = 0; Feature < NumFeatures; Feature++) {
|
|
UpdateTablesForFeature(
|
|
ClassTemplate, ProtoMask, ConfigMask, Feature, &Features[Feature],
|
|
tables, 0);
|
|
|
|
/* Find Best Evidence for Current Feature */
|
|
int best = 0;
|
|
for (int i = 0; i < ClassTemplate->NumConfigs; i++)
|
|
if (tables->feature_evidence_[i] > best)
|
|
best = tables->feature_evidence_[i];
|
|
|
|
/* Update display for current feature */
|
|
if (ClipMatchEvidenceOn(Debug)) {
|
|
if (best < AdaptFeatureThreshold)
|
|
DisplayIntFeature(&Features[Feature], 0.0);
|
|
else
|
|
DisplayIntFeature(&Features[Feature], 1.0);
|
|
} else {
|
|
DisplayIntFeature(&Features[Feature], best / 255.0);
|
|
}
|
|
}
|
|
|
|
delete tables;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Add sum of Proto Evidences into Sum Of Feature Evidence Array
|
|
*/
|
|
void ScratchEvidence::UpdateSumOfProtoEvidences(
|
|
INT_CLASS ClassTemplate, BIT_VECTOR ConfigMask, inT16 NumFeatures) {
|
|
|
|
int *IntPointer;
|
|
uinT32 ConfigWord;
|
|
int ProtoSetIndex;
|
|
uinT16 ProtoNum;
|
|
PROTO_SET ProtoSet;
|
|
int NumProtos;
|
|
uinT16 ActualProtoNum;
|
|
|
|
NumProtos = ClassTemplate->NumProtos;
|
|
|
|
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
|
|
ProtoSetIndex++) {
|
|
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
|
|
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
|
|
for (ProtoNum = 0;
|
|
((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < NumProtos));
|
|
ProtoNum++, ActualProtoNum++) {
|
|
int temp = 0;
|
|
for (int i = 0; i < ClassTemplate->ProtoLengths[ActualProtoNum]; i++)
|
|
temp += proto_evidence_[ActualProtoNum] [i];
|
|
|
|
ConfigWord = ProtoSet->Protos[ProtoNum].Configs[0];
|
|
ConfigWord &= *ConfigMask;
|
|
IntPointer = sum_feature_evidence_;
|
|
while (ConfigWord) {
|
|
if (ConfigWord & 1)
|
|
*IntPointer += temp;
|
|
IntPointer++;
|
|
ConfigWord >>= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Normalize Sum of Proto and Feature Evidence by dividing by the sum of
|
|
* the Feature Lengths and the Proto Lengths for each configuration.
|
|
*/
|
|
void ScratchEvidence::NormalizeSums(
|
|
INT_CLASS ClassTemplate, inT16 NumFeatures, inT32 used_features) {
|
|
|
|
for (int i = 0; i < ClassTemplate->NumConfigs; i++) {
|
|
sum_feature_evidence_[i] = (sum_feature_evidence_[i] << 8) /
|
|
(NumFeatures + ClassTemplate->ConfigLengths[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Find the best match for the current class and update the Result
|
|
* with the configuration and match rating.
|
|
* @return The best normalized sum of evidences
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
|
|
*/
|
|
int IntegerMatcher::FindBestMatch(
|
|
INT_CLASS class_template,
|
|
const ScratchEvidence &tables,
|
|
UnicharRating* result) {
|
|
int best_match = 0;
|
|
result->config = 0;
|
|
result->fonts.truncate(0);
|
|
result->fonts.reserve(class_template->NumConfigs);
|
|
|
|
/* Find best match */
|
|
for (int c = 0; c < class_template->NumConfigs; ++c) {
|
|
int rating = tables.sum_feature_evidence_[c];
|
|
if (*classify_debug_level_ > 2)
|
|
tprintf("Config %d, rating=%d\n", c, rating);
|
|
if (rating > best_match) {
|
|
result->config = c;
|
|
best_match = rating;
|
|
}
|
|
result->fonts.push_back(ScoredFont(c, rating));
|
|
}
|
|
|
|
// Compute confidence on a Probability scale.
|
|
result->rating = best_match / 65536.0f;
|
|
|
|
return best_match;
|
|
}
|
|
|
|
/**
|
|
* Applies the CN normalization factor to the given rating and returns
|
|
* the modified rating.
|
|
*/
|
|
float IntegerMatcher::ApplyCNCorrection(float rating, int blob_length,
|
|
int normalization_factor,
|
|
int matcher_multiplier) {
|
|
return (rating * blob_length +
|
|
matcher_multiplier * normalization_factor / 256.0) /
|
|
(blob_length + matcher_multiplier);
|
|
}
|
|
|
|
/**
|
|
* Sort Key array in ascending order using heap sort
|
|
* algorithm. Also sort Index array that is tied to
|
|
* the key array.
|
|
* @param n Number of elements to sort
|
|
* @param ra Key array [1..n]
|
|
* @param rb Index array [1..n]
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Tue Feb 19 10:24:24 MST 1991, RWM, Created.
|
|
*/
|
|
void
|
|
HeapSort (int n, register int ra[], register int rb[]) {
|
|
int i, rra, rrb;
|
|
int l, j, ir;
|
|
|
|
l = (n >> 1) + 1;
|
|
ir = n;
|
|
for (;;) {
|
|
if (l > 1) {
|
|
rra = ra[--l];
|
|
rrb = rb[l];
|
|
}
|
|
else {
|
|
rra = ra[ir];
|
|
rrb = rb[ir];
|
|
ra[ir] = ra[1];
|
|
rb[ir] = rb[1];
|
|
if (--ir == 1) {
|
|
ra[1] = rra;
|
|
rb[1] = rrb;
|
|
return;
|
|
}
|
|
}
|
|
i = l;
|
|
j = l << 1;
|
|
while (j <= ir) {
|
|
if (j < ir && ra[j] < ra[j + 1])
|
|
++j;
|
|
if (rra < ra[j]) {
|
|
ra[i] = ra[j];
|
|
rb[i] = rb[j];
|
|
j += (i = j);
|
|
}
|
|
else
|
|
j = ir + 1;
|
|
}
|
|
ra[i] = rra;
|
|
rb[i] = rrb;
|
|
}
|
|
}
|