tesseract/ccstruct/detlinefit.cpp

243 lines
8.2 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: detlinefit.cpp
// Description: Deterministic least median squares line fitting.
// Author: Ray Smith
// Created: Thu Feb 28 14:45:01 PDT 2008
//
// (C) Copyright 2008, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "detlinefit.h"
#include "statistc.h"
#include "ndminx.h"
namespace tesseract {
// The number of points to consider at each end.
const int kNumEndPoints = 3;
DetLineFit::DetLineFit() {
}
DetLineFit::~DetLineFit() {
}
// Delete all Added points.
void DetLineFit::Clear() {
pt_list_.clear();
}
// Add a new point. Takes a copy - the pt doesn't need to stay in scope.
void DetLineFit::Add(const ICOORD& pt) {
ICOORDELT_IT it = &pt_list_;
ICOORDELT* new_pt = new ICOORDELT(pt);
it.add_to_end(new_pt);
}
// Fit a line to the points, returning the fitted line as a pair of
// points, and the upper quartile error.
double DetLineFit::Fit(ICOORD* pt1, ICOORD* pt2) {
ICOORDELT_IT it(&pt_list_);
// Do something sensible with no points.
if (pt_list_.empty()) {
pt1->set_x(0);
pt1->set_y(0);
*pt2 = *pt1;
return 0.0;
}
// Count the points and find the first and last kNumEndPoints.
ICOORD* starts[kNumEndPoints];
ICOORD* ends[kNumEndPoints];
int pt_count = 0;
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
if (pt_count < kNumEndPoints) {
starts[pt_count] = it.data();
ends[pt_count] = starts[pt_count];
} else {
for (int i = 1; i < kNumEndPoints; ++i)
ends[i - 1] = ends[i];
ends[kNumEndPoints - 1] = it.data();
}
++pt_count;
}
// 1 or 2 points need special treatment.
if (pt_count <= 2) {
*pt1 = *starts[0];
if (pt_count > 1)
*pt2 = *starts[1];
else
*pt2 = *pt1;
return 0.0;
}
int end_count = MIN(pt_count, kNumEndPoints);
int* distances = new int[pt_count];
double best_uq = -1.0;
// Iterate each pair of points and find the best fitting line.
for (int i = 0; i < end_count; ++i) {
ICOORD* start = starts[i];
for (int j = 0; j < end_count; ++j) {
ICOORD* end = ends[j];
if (start != end) {
// Compute the upper quartile error from the line.
double dist = ComputeErrors(*start, *end, distances);
if (dist < best_uq || best_uq < 0.0) {
best_uq = dist;
*pt1 = *start;
*pt2 = *end;
}
}
}
}
delete [] distances;
// Finally compute the square root to return the true distance.
return best_uq > 0.0 ? sqrt(best_uq) : best_uq;
}
// Backwards compatible fit returning a gradient and constant.
// Deprecated. Prefer Fit(ICOORD*, ICOORD*) where possible, but use this
// function in preference to the LMS class.
double DetLineFit::Fit(float* m, float* c) {
ICOORD start, end;
double error = Fit(&start, &end);
if (end.x() != start.x()) {
*m = static_cast<float>(end.y() - start.y()) / (end.x() - start.x());
*c = start.y() - *m * start.x();
} else {
*m = 0.0f;
*c = 0.0f;
}
return error;
}
// Helper function to compute a fictitious end point that is on a line
// of a given gradient through the given start.
ICOORD ComputeEndFromGradient(const ICOORD& start, double m) {
if (m > 1.0 || m < -1.0) {
// dy dominates. Force it to have the opposite sign of start.y() and
// compute dx based on dy being as large as possible
int dx = static_cast<int>(floor(MAX_INT16 / m));
if (dx < 0) ++dx; // Truncate towards 0.
if (start.y() > 0) dx = - dx; // Force dy to be opposite to start.y().
// Constrain dx so the result fits in an inT16.
while (start.x() + dx > MAX_INT16 || start.x() + dx < -MAX_INT16)
dx /= 2;
if (-1 <= dx && dx <= 1) {
return ICOORD(start.x(), start.y() + 1); // Too steep for anything else.
}
int y = start.y() + static_cast<int>(floor(dx * m + 0.5));
ASSERT_HOST(-MAX_INT16 <= y && y <= MAX_INT16);
return ICOORD(start.x() + dx, y);
} else {
// dx dominates. Force it to have the opposite sign of start.x() and
// compute dy based on dx being as large as possible.
int dy = static_cast<int>(floor(MAX_INT16 * m));
if (dy < 0) ++dy; // Truncate towards 0.
if (start.x() > 0) dy = - dy; // Force dx to be opposite to start.x().
// Constrain dy so the result fits in an inT16.
while (start.y() + dy > MAX_INT16 || start.y() + dy < -MAX_INT16)
dy /= 2;
if (-1 <= dy && dy <= 1) {
return ICOORD(start.x() + 1, start.y()); // Too flat for anything else.
}
int x = start.x() + static_cast<int>(floor(dy / m + 0.5));
ASSERT_HOST(-MAX_INT16 <= x && x <= MAX_INT16);
return ICOORD(x, start.y() + dy);
}
}
// Backwards compatible constrained fit with a supplied gradient.
double DetLineFit::ConstrainedFit(double m, float* c) {
ICOORDELT_IT it(&pt_list_);
// Do something sensible with no points.
if (pt_list_.empty()) {
*c = 0.0f;
return 0.0;
}
// Count the points and find the first and last kNumEndPoints.
// Put the ends in a single array to make their use easier later.
ICOORD* pts[kNumEndPoints * 2];
int pt_count = 0;
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
if (pt_count < kNumEndPoints) {
pts[pt_count] = it.data();
pts[kNumEndPoints + pt_count] = pts[pt_count];
} else {
for (int i = 1; i < kNumEndPoints; ++i)
pts[kNumEndPoints + i - 1] = pts[kNumEndPoints + i];
pts[kNumEndPoints * 2 - 1] = it.data();
}
++pt_count;
}
while (pt_count < kNumEndPoints) {
pts[pt_count] = NULL;
pts[kNumEndPoints + pt_count++] = NULL;
}
int* distances = new int[pt_count];
double best_uq = -1.0;
// Iterate each pair of points and find the best fitting line.
for (int i = 0; i < kNumEndPoints * 2; ++i) {
ICOORD* start = pts[i];
if (start == NULL) continue;
ICOORD end = ComputeEndFromGradient(*start, m);
// Compute the upper quartile error from the line.
double dist = ComputeErrors(*start, end, distances);
if (dist < best_uq || best_uq < 0.0) {
best_uq = dist;
*c = start->y() - start->x() * m;
}
}
delete [] distances;
// Finally compute the square root to return the true distance.
return best_uq > 0.0 ? sqrt(best_uq) : best_uq;
}
// Comparator function used by the nth_item funtion.
static int CompareInts(const void *p1, const void *p2) {
const int* i1 = reinterpret_cast<const int*>(p1);
const int* i2 = reinterpret_cast<const int*>(p2);
return *i1 - *i2;
}
// Compute all the cross product distances of the points from the line
// and return the true squared upper quartile distance.
double DetLineFit::ComputeErrors(const ICOORD start, const ICOORD end,
int* distances) {
ICOORDELT_IT it(&pt_list_);
ICOORD line_vector = end;
line_vector -= start;
// Compute the distance of each point from the line.
int pt_index = 0;
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
ICOORD pt_vector = *it.data();
pt_vector -= start;
// Compute |line_vector||pt_vector|sin(angle between)
int dist = line_vector * pt_vector;
if (dist < 0)
dist = -dist;
distances[pt_index++] = dist;
}
// Now get the upper quartile distance.
int index = choose_nth_item(3 * pt_index / 4, distances, pt_index,
sizeof(distances[0]), CompareInts);
double dist = distances[index];
// The true distance is the square root of the dist squared / the
// squared length of line_vector (which is the dot product with itself)
// Don't bother with the square root. Just return the square distance.
return dist * dist / (line_vector % line_vector);
}
} // namespace tesseract.