tesseract/wordrec/heuristic.cpp

343 lines
14 KiB
C++

/* -*-C-*-
********************************************************************************
*
* File: heuristic.c (Formerly heuristic.c)
* Description:
* Author: Mark Seaman, OCR Technology
* Created: Fri Oct 16 14:37:00 1987
* Modified: Wed Jul 10 14:15:08 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Reusable Software Component
*
* (c) Copyright 1987, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
*********************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
----------------------------------------------------------------------*/
#include <math.h>
// Note: "heuristic.h" is an empty file and deleted
#include "associate.h"
#include "bestfirst.h"
#include "seam.h"
#include "baseline.h"
#include "freelist.h"
#include "measure.h"
#include "ratngs.h"
#include "wordrec.h"
/*----------------------------------------------------------------------
M a c r o s
----------------------------------------------------------------------*/
#define BAD_RATING 1000.0 /* No valid blob */
namespace tesseract {
/*----------------------------------------------------------------------
// Some static helpers used only in this file
----------------------------------------------------------------------*/
// Return a character width record corresponding to the character
// width that will be generated in this segmentation state.
// The calling function need to memfree WIDTH_RECORD when finished.
// This is the same as the original function, only cosmetic changes,
// except instead of passing chunks back to be freed, it deallocates
// internally.
WIDTH_RECORD *Wordrec::state_char_widths(WIDTH_RECORD *chunk_widths,
STATE *state,
int num_joints) {
SEARCH_STATE chunks = bin_to_chunks(state, num_joints);
int num_chars = chunks[0] + 1;
// allocate and store (n+1,w0,g0,w1,g1...,wn) in int[2*(n+1)] as a
// struct { num_chars, widths[2*n+1]; }
WIDTH_RECORD *char_widths = (WIDTH_RECORD*) memalloc(sizeof(int)*num_chars*2);
char_widths->num_chars = num_chars;
int first_blob = 0;
int last_blob;
for (int i = 1; i <= num_chars; i++) {
last_blob = (i > chunks[0]) ? num_joints : first_blob + chunks[i];
char_widths->widths[2*i-2] =
AssociateUtils::GetChunksWidth(chunk_widths, first_blob, last_blob);
if (i <= chunks[0]) {
char_widths->widths[2*i-1] =
AssociateUtils::GetChunksGap(chunk_widths, last_blob);
}
if (segment_adjust_debug > 3)
tprintf("width_record[%d]s%d--s%d(%d) %d %d:%d\n",
i-1, first_blob, last_blob, chunks[i],
char_widths->widths[2*i-2], char_widths->widths[2*i-1],
chunk_widths->widths[2*last_blob+1]);
first_blob = last_blob + 1;
}
memfree(chunks);
return char_widths;
}
// Computes the variance of the char widths normalized to the given height
// TODO(dsl): Do this in a later stage and use char choice info to skip
// punctuations.
FLOAT32 Wordrec::get_width_variance(WIDTH_RECORD *wrec, float norm_height) {
MEASUREMENT ws;
new_measurement(ws);
for (int x = 0; x < wrec->num_chars; x++) {
FLOAT32 wh_ratio = wrec->widths[2 * x] * 1.0f / norm_height;
if (x == wrec->num_chars - 1 && wh_ratio > 0.3)
continue; // exclude trailing punctuation from stats
ADD_SAMPLE(ws, wh_ratio);
}
if (segment_adjust_debug > 2)
tprintf("Width Mean=%g Var=%g\n", MEAN(ws), VARIANCE(ws));
return VARIANCE(ws);
}
// Computes the variance of char positioning (width + spacing) wrt norm_height
FLOAT32 Wordrec::get_gap_variance(WIDTH_RECORD *wrec, float norm_height) {
MEASUREMENT ws;
new_measurement(ws);
for (int x = 0; x < wrec->num_chars - 1; x++) {
FLOAT32 gap_ratio = (wrec->widths[2 * x] + wrec->widths[ 2*x + 1])
* 1.0 / norm_height;
ADD_SAMPLE(ws, gap_ratio);
}
if (segment_adjust_debug > 2)
tprintf("Gap Mean=%g Var=%g\n", MEAN(ws), VARIANCE(ws));
return VARIANCE(ws);
}
/*----------------------------------------------------------------------
Below are the new state prioritization functions, which incorporates
segmentation cost and width distribution for fixed pitch languages.
They are included as methods in class Wordrec to obtain more context.
----------------------------------------------------------------------*/
/**********************************************************************
* Returns the cost associated with the segmentation state.
*
* The number of states should be the same as the number of seams.
* If state[i] is 1, then seams[i] is present; otherwise, it is hidden.
* This function returns the sum of priority for active seams.
* TODO(dsl): To keep this clean, this function will just return the
* sum of raw "priority" as seam cost. The normalization of this score
* relative to other costs will be done in bestfirst.cpp evaluate_seg().
**********************************************************************/
FLOAT32 Wordrec::seamcut_priority(SEAMS seams,
STATE *state,
int num_joints) {
int x;
unsigned int mask = (num_joints > 32) ? (1 << (num_joints - 1 - 32))
: (1 << (num_joints - 1));
float seam_cost = 0.0f;
for (x = num_joints - 1; x >= 0; x--) {
int i = num_joints - 1 - x;
uinT32 value = (x < 32) ? state->part2 : state->part1;
bool state_on = value & mask;
if (state_on) {
SEAM* seam = (SEAM *) array_value(seams, i);
seam_cost += seam->priority;
}
if (mask == 1)
mask = 1 << 31;
else
mask >>= 1;
}
if (segment_adjust_debug > 2)
tprintf("seam_cost: %f\n", seam_cost);
return seam_cost;
}
/**********************************************************************
* rating_priority
*
* Assign a segmentation priority based on the ratings of the blobs
* (in that segmentation) that have been classified. The average
* "goodness" (i.e. rating / weight) for each blob is used to indicate
* the segmentation priority. This is the original.
**********************************************************************/
FLOAT32 Wordrec::rating_priority(CHUNKS_RECORD *chunks_record,
STATE *state,
int num_joints) {
BLOB_CHOICE_LIST *blob_choices;
BLOB_CHOICE_IT blob_choice_it;
inT16 first_chunk = 0;
inT16 last_chunk;
inT16 ratings = 0;
inT16 weights = 0;
PIECES_STATE blob_chunks;
bin_to_pieces(state, num_joints, blob_chunks);
for (int x = 0; blob_chunks[x]; x++) {
last_chunk = first_chunk + blob_chunks[x];
blob_choices = chunks_record->ratings->get(first_chunk, last_chunk - 1);
if (blob_choices != NOT_CLASSIFIED && blob_choices->length() > 0) {
blob_choice_it.set_to_list(blob_choices);
ratings += (inT16) blob_choice_it.data()->rating();
for (int y = first_chunk; y < last_chunk; y++) {
weights += (inT16) (chunks_record->weights[y]);
}
}
first_chunk = last_chunk;
}
if (weights <= 0)
weights = 1;
FLOAT32 rating_cost = static_cast<FLOAT32>(ratings) /
static_cast<FLOAT32>(weights);
if (segment_adjust_debug > 2)
tprintf("rating_cost: r%f / w%f = %f\n", ratings, weights, rating_cost);
return rating_cost;
}
/**********************************************************************
* width_priority
*
* Return a priority value for this word segmentation based on the
* character widths present in the new segmentation.
* For variable-pitch fonts, this should do the same thing as before:
* ie. penalize only on really wide squatting blobs.
* For fixed-pitch fonts, this will include a measure of char & gap
* width consistency.
* TODO(dsl): generalize this to use a PDF estimate for proportional and
* fixed pitch mode.
**********************************************************************/
FLOAT32 Wordrec::width_priority(CHUNKS_RECORD *chunks_record,
STATE *state,
int num_joints) {
FLOAT32 penalty = 0.0;
WIDTH_RECORD *width_rec = state_char_widths(chunks_record->chunk_widths,
state, num_joints);
// When baseline_enable==True, which is the current default for Tesseract,
// a fixed value of 128 (BASELINE_SCALE) is always used.
FLOAT32 normalizing_height = BASELINE_SCALE;
if (assume_fixed_pitch_char_segment) {
// For fixed pitch language like CJK, we use the full text height as the
// normalizing factor so we are not dependent on xheight calculation.
// In the normalized coord. xheight * scale == BASELINE_SCALE(128),
// so add proportionally scaled ascender zone to get full text height.
const DENORM& denorm = chunks_record->word_res->denorm;
normalizing_height = denorm.y_scale() *
(denorm.row()->x_height() + denorm.row()->ascenders());
if (segment_adjust_debug > 1)
tprintf("WidthPriority: %f %f normalizing height = %f\n",
denorm.row()->x_height(), denorm.row()->ascenders(),
normalizing_height);
// Impose additional segmentation penalties if blob widths or gaps
// distribution don't fit a fixed-pitch model.
FLOAT32 width_var = get_width_variance(width_rec, normalizing_height);
FLOAT32 gap_var = get_gap_variance(width_rec, normalizing_height);
penalty += width_var;
penalty += gap_var;
}
for (int x = 0; x < width_rec->num_chars; x++) {
FLOAT32 squat = width_rec->widths[2*x];
FLOAT32 gap = (x < width_rec->num_chars-1) ? width_rec->widths[2*x+1] : 0;
squat /= normalizing_height;
gap /= normalizing_height;
if (assume_fixed_pitch_char_segment) {
penalty += AssociateUtils::FixedPitchWidthCost(
squat, 0.0f, x == 0 || x == width_rec->num_chars -1,
heuristic_max_char_wh_ratio);
penalty += AssociateUtils::FixedPitchGapCost(
gap, x == width_rec->num_chars - 1);
if (width_rec->num_chars == 1 &&
squat > AssociateUtils::kMaxFixedPitchCharAspectRatio) {
penalty += 10;
}
} else {
// Original equation when
// heuristic_max_char_ratio == AssociateUtils::kMaxSquat
if (squat > heuristic_max_char_wh_ratio)
penalty += squat - heuristic_max_char_wh_ratio;
}
}
free_widths(width_rec);
return (penalty);
}
/**********************************************************************
* prioritize_state
*
* Create a priority for this state. It represents the urgency of
* checking this state. The larger the priority value, the worse the
* state is (lower priority). The "value" of this priority should be
* somewhat consistent with the final word rating.
* The question is how to normalize the different scores, and adjust
* the relative importance among them.
**********************************************************************/
FLOAT32 Wordrec::prioritize_state(CHUNKS_RECORD *chunks_record,
SEARCH_RECORD *the_search) {
FLOAT32 shape_cost;
FLOAT32 width_cost;
FLOAT32 seam_cost;
shape_cost = rating_priority(chunks_record,
the_search->this_state,
the_search->num_joints);
width_cost = width_priority(chunks_record,
the_search->this_state,
the_search->num_joints);
// The rating_priority is the same as the original, and the width_priority
// is the same as before if assume_fixed_pitch_char_segment == FALSE.
// So this would return the original state priority.
if (!use_new_state_cost)
return width_cost * 1000 + shape_cost;
seam_cost = seamcut_priority(chunks_record->splits,
the_search->this_state,
the_search->num_joints);
// TODO(dsl): how do we normalize the scores for these separate evidence?
// FLOAT32 total_cost = shape_cost + width_cost * 0.01 + seam_cost * 0.001;
FLOAT32 total_cost = shape_cost * heuristic_weight_rating +
width_cost * heuristic_weight_width +
seam_cost * heuristic_weight_seamcut;
// We don't have an adjustment model for variable pitch segmentation cost
// into word rating
if (assume_fixed_pitch_char_segment) {
float seg_bias = 1.0;
if (width_cost < 1) seg_bias *= 0.85;
if (width_cost > 3)
seg_bias *= pow(heuristic_segcost_rating_base, width_cost/3.0);
if (seam_cost > 10)
seg_bias *= pow(heuristic_segcost_rating_base, log(seam_cost)/log(10.0));
if (shape_cost > 5)
seg_bias *= pow(heuristic_segcost_rating_base, shape_cost/5.0);
if (segment_adjust_debug) {
tprintf("SegCost: %g Weight: %g rating: %g width: %g seam: %g\n",
total_cost, seg_bias, shape_cost, width_cost, seam_cost);
}
the_search->segcost_bias = seg_bias;
} else {
the_search->segcost_bias = 0;
}
return total_cost;
}
} // namespace tesseract