mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
680bfddb4f
Those versions are no longer supported. Signed-off-by: Stefan Weil <sw@weilnetz.de>
1536 lines
51 KiB
C++
1536 lines
51 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: equationdetect.cpp
|
|
// Description: Helper classes to detect equations.
|
|
// Author: Zongyi (Joe) Liu (joeliu@google.com)
|
|
// Created: Fri Aug 31 11:13:01 PST 2011
|
|
//
|
|
// (C) Copyright 2011, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4244) // Conversion warnings
|
|
#include <mathfix.h>
|
|
#endif
|
|
|
|
#ifdef __MINGW32__
|
|
#include <limits.h>
|
|
#endif
|
|
|
|
#include <float.h>
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
#include "equationdetect.h"
|
|
|
|
#include "bbgrid.h"
|
|
#include "classify.h"
|
|
#include "colpartition.h"
|
|
#include "colpartitiongrid.h"
|
|
#include "colpartitionset.h"
|
|
#include "helpers.h"
|
|
#include "ratngs.h"
|
|
#include "tesseractclass.h"
|
|
|
|
// Config variables.
|
|
BOOL_VAR(equationdetect_save_bi_image, false, "Save input bi image");
|
|
BOOL_VAR(equationdetect_save_spt_image, false, "Save special character image");
|
|
BOOL_VAR(equationdetect_save_seed_image, false, "Save the seed image");
|
|
BOOL_VAR(equationdetect_save_merged_image, false, "Save the merged image");
|
|
|
|
namespace tesseract {
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Utility ColParition sort functions.
|
|
///////////////////////////////////////////////////////////////////////////
|
|
static int SortCPByTopReverse(const void* p1, const void* p2) {
|
|
const ColPartition* cp1 = *reinterpret_cast<ColPartition* const*>(p1);
|
|
const ColPartition* cp2 = *reinterpret_cast<ColPartition* const*>(p2);
|
|
ASSERT_HOST(cp1 != NULL && cp2 != NULL);
|
|
const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
|
|
return box2.top() - box1.top();
|
|
}
|
|
|
|
static int SortCPByBottom(const void* p1, const void* p2) {
|
|
const ColPartition* cp1 = *reinterpret_cast<ColPartition* const*>(p1);
|
|
const ColPartition* cp2 = *reinterpret_cast<ColPartition* const*>(p2);
|
|
ASSERT_HOST(cp1 != NULL && cp2 != NULL);
|
|
const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
|
|
return box1.bottom() - box2.bottom();
|
|
}
|
|
|
|
static int SortCPByHeight(const void* p1, const void* p2) {
|
|
const ColPartition* cp1 = *reinterpret_cast<ColPartition* const*>(p1);
|
|
const ColPartition* cp2 = *reinterpret_cast<ColPartition* const*>(p2);
|
|
ASSERT_HOST(cp1 != NULL && cp2 != NULL);
|
|
const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
|
|
return box1.height() - box2.height();
|
|
}
|
|
|
|
// TODO(joeliu): we may want to parameterize these constants.
|
|
const float kMathDigitDensityTh1 = 0.25;
|
|
const float kMathDigitDensityTh2 = 0.1;
|
|
const float kMathItalicDensityTh = 0.5;
|
|
const float kUnclearDensityTh = 0.25;
|
|
const int kSeedBlobsCountTh = 10;
|
|
const int kLeftIndentAlignmentCountTh = 1;
|
|
|
|
// Returns true if PolyBlockType is of text type or equation type.
|
|
inline bool IsTextOrEquationType(PolyBlockType type) {
|
|
return PTIsTextType(type) || type == PT_EQUATION;
|
|
}
|
|
|
|
inline bool IsLeftIndented(const EquationDetect::IndentType type) {
|
|
return type == EquationDetect::LEFT_INDENT ||
|
|
type == EquationDetect::BOTH_INDENT;
|
|
}
|
|
|
|
inline bool IsRightIndented(const EquationDetect::IndentType type) {
|
|
return type == EquationDetect::RIGHT_INDENT ||
|
|
type == EquationDetect::BOTH_INDENT;
|
|
}
|
|
|
|
EquationDetect::EquationDetect(const char* equ_datapath,
|
|
const char* equ_name) {
|
|
const char* default_name = "equ";
|
|
if (equ_name == NULL) {
|
|
equ_name = default_name;
|
|
}
|
|
equ_tesseract_ = lang_tesseract_ = NULL;
|
|
resolution_ = 0;
|
|
page_count_ = 0;
|
|
|
|
// Construct equ_tesseract_.
|
|
equ_tesseract_ = new Tesseract();
|
|
if (equ_tesseract_->init_tesseract(equ_datapath, equ_name,
|
|
OEM_TESSERACT_ONLY)) {
|
|
tprintf("Warning: equation region detection requested,"
|
|
" but %s failed to load from %s\n", equ_name, equ_datapath);
|
|
delete equ_tesseract_;
|
|
equ_tesseract_ = NULL;
|
|
}
|
|
|
|
cps_super_bbox_ = NULL;
|
|
}
|
|
|
|
EquationDetect::~EquationDetect() {
|
|
if (equ_tesseract_) {
|
|
delete (equ_tesseract_);
|
|
}
|
|
if (cps_super_bbox_) {
|
|
delete(cps_super_bbox_);
|
|
}
|
|
}
|
|
|
|
void EquationDetect::SetLangTesseract(Tesseract* lang_tesseract) {
|
|
lang_tesseract_ = lang_tesseract;
|
|
}
|
|
|
|
void EquationDetect::SetResolution(const int resolution) {
|
|
resolution_ = resolution;
|
|
}
|
|
|
|
int EquationDetect::LabelSpecialText(TO_BLOCK* to_block) {
|
|
if (to_block == NULL) {
|
|
tprintf("Warning: input to_block is NULL!\n");
|
|
return -1;
|
|
}
|
|
|
|
GenericVector<BLOBNBOX_LIST*> blob_lists;
|
|
blob_lists.push_back(&(to_block->blobs));
|
|
blob_lists.push_back(&(to_block->large_blobs));
|
|
for (int i = 0; i < blob_lists.size(); ++i) {
|
|
BLOBNBOX_IT bbox_it(blob_lists[i]);
|
|
for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
|
|
bbox_it.forward()) {
|
|
bbox_it.data()->set_special_text_type(BSTT_NONE);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void EquationDetect::IdentifySpecialText(
|
|
BLOBNBOX *blobnbox, const int height_th) {
|
|
ASSERT_HOST(blobnbox != NULL);
|
|
if (blobnbox->bounding_box().height() < height_th && height_th > 0) {
|
|
// For small blob, we simply set to BSTT_NONE.
|
|
blobnbox->set_special_text_type(BSTT_NONE);
|
|
return;
|
|
}
|
|
|
|
BLOB_CHOICE_LIST ratings_equ, ratings_lang;
|
|
C_BLOB* blob = blobnbox->cblob();
|
|
// TODO(joeliu/rays) Fix this. We may have to normalize separately for
|
|
// each classifier here, as they may require different PolygonalCopy.
|
|
TBLOB* tblob = TBLOB::PolygonalCopy(false, blob);
|
|
const TBOX& box = tblob->bounding_box();
|
|
|
|
// Normalize the blob. Set the origin to the place we want to be the
|
|
// bottom-middle, and scaling is to make the height the x-height.
|
|
float scaling = static_cast<float>(kBlnXHeight) / box.height();
|
|
float x_orig = (box.left() + box.right()) / 2.0f, y_orig = box.bottom();
|
|
TBLOB* normed_blob = new TBLOB(*tblob);
|
|
normed_blob->Normalize(NULL, NULL, NULL, x_orig, y_orig, scaling, scaling,
|
|
0.0f, static_cast<float>(kBlnBaselineOffset),
|
|
false, NULL);
|
|
equ_tesseract_->AdaptiveClassifier(normed_blob, &ratings_equ);
|
|
lang_tesseract_->AdaptiveClassifier(normed_blob, &ratings_lang);
|
|
delete normed_blob;
|
|
delete tblob;
|
|
|
|
// Get the best choice from ratings_lang and rating_equ. As the choice in the
|
|
// list has already been sorted by the certainty, we simply use the first
|
|
// choice.
|
|
BLOB_CHOICE *lang_choice = NULL, *equ_choice = NULL;
|
|
if (ratings_lang.length() > 0) {
|
|
BLOB_CHOICE_IT choice_it(&ratings_lang);
|
|
lang_choice = choice_it.data();
|
|
}
|
|
if (ratings_equ.length() > 0) {
|
|
BLOB_CHOICE_IT choice_it(&ratings_equ);
|
|
equ_choice = choice_it.data();
|
|
}
|
|
|
|
float lang_score = lang_choice ? lang_choice->certainty() : -FLT_MAX;
|
|
float equ_score = equ_choice ? equ_choice->certainty() : -FLT_MAX;
|
|
|
|
const float kConfScoreTh = -5.0f, kConfDiffTh = 1.8;
|
|
// The scores here are negative, so the max/min == fabs(min/max).
|
|
// float ratio = fmax(lang_score, equ_score) / fmin(lang_score, equ_score);
|
|
float diff = fabs(lang_score - equ_score);
|
|
BlobSpecialTextType type = BSTT_NONE;
|
|
|
|
// Classification.
|
|
if (fmax(lang_score, equ_score) < kConfScoreTh) {
|
|
// If both score are very small, then mark it as unclear.
|
|
type = BSTT_UNCLEAR;
|
|
} else if (diff > kConfDiffTh && equ_score > lang_score) {
|
|
// If equ_score is significantly higher, then we classify this character as
|
|
// math symbol.
|
|
type = BSTT_MATH;
|
|
} else if (lang_choice) {
|
|
// For other cases: lang_score is similar or significantly higher.
|
|
type = EstimateTypeForUnichar(
|
|
lang_tesseract_->unicharset, lang_choice->unichar_id());
|
|
}
|
|
|
|
if (type == BSTT_NONE && lang_tesseract_->get_fontinfo_table().get(
|
|
lang_choice->fontinfo_id()).is_italic()) {
|
|
// For text symbol, we still check if it is italic.
|
|
blobnbox->set_special_text_type(BSTT_ITALIC);
|
|
} else {
|
|
blobnbox->set_special_text_type(type);
|
|
}
|
|
}
|
|
|
|
BlobSpecialTextType EquationDetect::EstimateTypeForUnichar(
|
|
const UNICHARSET& unicharset, const UNICHAR_ID id) const {
|
|
STRING s = unicharset.id_to_unichar(id);
|
|
if (unicharset.get_isalpha(id)) {
|
|
return BSTT_NONE;
|
|
}
|
|
|
|
if (unicharset.get_ispunctuation(id)) {
|
|
// Exclude some special texts that are likely to be confused as math symbol.
|
|
static GenericVector<UNICHAR_ID> ids_to_exclude;
|
|
if (ids_to_exclude.empty()) {
|
|
static const STRING kCharsToEx[] = {"'", "`", "\"", "\\", ",", ".",
|
|
"〈", "〉", "《", "》", "」", "「", ""};
|
|
int i = 0;
|
|
while (kCharsToEx[i] != "") {
|
|
ids_to_exclude.push_back(
|
|
unicharset.unichar_to_id(kCharsToEx[i++].string()));
|
|
}
|
|
ids_to_exclude.sort();
|
|
}
|
|
return ids_to_exclude.bool_binary_search(id) ? BSTT_NONE : BSTT_MATH;
|
|
}
|
|
|
|
// Check if it is digit. In addition to the isdigit attribute, we also check
|
|
// if this character belongs to those likely to be confused with a digit.
|
|
static const STRING kDigitsChars = "|";
|
|
if (unicharset.get_isdigit(id) ||
|
|
(s.length() == 1 && kDigitsChars.contains(s[0]))) {
|
|
return BSTT_DIGIT;
|
|
} else {
|
|
return BSTT_MATH;
|
|
}
|
|
}
|
|
|
|
void EquationDetect::IdentifySpecialText() {
|
|
// Set configuration for Tesseract::AdaptiveClassifier.
|
|
equ_tesseract_->tess_cn_matching.set_value(true); // turn it on
|
|
equ_tesseract_->tess_bn_matching.set_value(false);
|
|
|
|
// Set the multiplier to zero for lang_tesseract_ to improve the accuracy.
|
|
int classify_class_pruner = lang_tesseract_->classify_class_pruner_multiplier;
|
|
int classify_integer_matcher =
|
|
lang_tesseract_->classify_integer_matcher_multiplier;
|
|
lang_tesseract_->classify_class_pruner_multiplier.set_value(0);
|
|
lang_tesseract_->classify_integer_matcher_multiplier.set_value(0);
|
|
|
|
ColPartitionGridSearch gsearch(part_grid_);
|
|
ColPartition *part = NULL;
|
|
gsearch.StartFullSearch();
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
if (!IsTextOrEquationType(part->type())) {
|
|
continue;
|
|
}
|
|
IdentifyBlobsToSkip(part);
|
|
BLOBNBOX_C_IT bbox_it(part->boxes());
|
|
// Compute the height threshold.
|
|
GenericVector<int> blob_heights;
|
|
for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
|
|
bbox_it.forward()) {
|
|
if (bbox_it.data()->special_text_type() != BSTT_SKIP) {
|
|
blob_heights.push_back(bbox_it.data()->bounding_box().height());
|
|
}
|
|
}
|
|
blob_heights.sort();
|
|
int height_th = blob_heights[blob_heights.size() / 2] / 3 * 2;
|
|
for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
|
|
bbox_it.forward()) {
|
|
if (bbox_it.data()->special_text_type() != BSTT_SKIP) {
|
|
IdentifySpecialText(bbox_it.data(), height_th);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set the multiplier values back.
|
|
lang_tesseract_->classify_class_pruner_multiplier.set_value(
|
|
classify_class_pruner);
|
|
lang_tesseract_->classify_integer_matcher_multiplier.set_value(
|
|
classify_integer_matcher);
|
|
|
|
if (equationdetect_save_spt_image) { // For debug.
|
|
STRING outfile;
|
|
GetOutputTiffName("_spt", &outfile);
|
|
PaintSpecialTexts(outfile);
|
|
}
|
|
}
|
|
|
|
void EquationDetect::IdentifyBlobsToSkip(ColPartition* part) {
|
|
ASSERT_HOST(part);
|
|
BLOBNBOX_C_IT blob_it(part->boxes());
|
|
|
|
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
|
|
// At this moment, no blob should have been joined.
|
|
ASSERT_HOST(!blob_it.data()->joined_to_prev());
|
|
}
|
|
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
|
|
BLOBNBOX* blob = blob_it.data();
|
|
if (blob->joined_to_prev() || blob->special_text_type() == BSTT_SKIP) {
|
|
continue;
|
|
}
|
|
TBOX blob_box = blob->bounding_box();
|
|
|
|
// Search if any blob can be merged into blob. If found, then we mark all
|
|
// these blobs as BSTT_SKIP.
|
|
BLOBNBOX_C_IT blob_it2 = blob_it;
|
|
bool found = false;
|
|
while (!blob_it2.at_last()) {
|
|
BLOBNBOX* nextblob = blob_it2.forward();
|
|
const TBOX& nextblob_box = nextblob->bounding_box();
|
|
if (nextblob_box.left() >= blob_box.right()) {
|
|
break;
|
|
}
|
|
const float kWidthR = 0.4, kHeightR = 0.3;
|
|
bool xoverlap = blob_box.major_x_overlap(nextblob_box),
|
|
yoverlap = blob_box.y_overlap(nextblob_box);
|
|
float widthR = static_cast<float>(
|
|
MIN(nextblob_box.width(), blob_box.width())) /
|
|
MAX(nextblob_box.width(), blob_box.width());
|
|
float heightR = static_cast<float>(
|
|
MIN(nextblob_box.height(), blob_box.height())) /
|
|
MAX(nextblob_box.height(), blob_box.height());
|
|
|
|
if (xoverlap && yoverlap && widthR > kWidthR && heightR > kHeightR) {
|
|
// Found one, set nextblob type and recompute blob_box.
|
|
found = true;
|
|
nextblob->set_special_text_type(BSTT_SKIP);
|
|
blob_box += nextblob_box;
|
|
}
|
|
}
|
|
if (found) {
|
|
blob->set_special_text_type(BSTT_SKIP);
|
|
}
|
|
}
|
|
}
|
|
|
|
int EquationDetect::FindEquationParts(
|
|
ColPartitionGrid* part_grid, ColPartitionSet** best_columns) {
|
|
if (!equ_tesseract_ || !lang_tesseract_) {
|
|
tprintf("Warning: equ_tesseract_/lang_tesseract_ is NULL!\n");
|
|
return -1;
|
|
}
|
|
if (!part_grid || !best_columns) {
|
|
tprintf("part_grid/best_columns is NULL!!\n");
|
|
return -1;
|
|
}
|
|
cp_seeds_.clear();
|
|
part_grid_ = part_grid;
|
|
best_columns_ = best_columns;
|
|
resolution_ = lang_tesseract_->source_resolution();
|
|
STRING outfile;
|
|
page_count_++;
|
|
|
|
if (equationdetect_save_bi_image) {
|
|
GetOutputTiffName("_bi", &outfile);
|
|
pixWrite(outfile.string(), lang_tesseract_->pix_binary(), IFF_TIFF_G4);
|
|
}
|
|
|
|
// Pass 0: Compute special text type for blobs.
|
|
IdentifySpecialText();
|
|
|
|
// Pass 1: Merge parts by overlap.
|
|
MergePartsByLocation();
|
|
|
|
// Pass 2: compute the math blob density and find the seed partition.
|
|
IdentifySeedParts();
|
|
// We still need separate seed into block seed and inline seed partition.
|
|
IdentifyInlineParts();
|
|
|
|
if (equationdetect_save_seed_image) {
|
|
GetOutputTiffName("_seed", &outfile);
|
|
PaintColParts(outfile);
|
|
}
|
|
|
|
// Pass 3: expand block equation seeds.
|
|
while (!cp_seeds_.empty()) {
|
|
GenericVector<ColPartition*> seeds_expanded;
|
|
for (int i = 0; i < cp_seeds_.size(); ++i) {
|
|
if (ExpandSeed(cp_seeds_[i])) {
|
|
// If this seed is expanded, then we add it into seeds_expanded. Note
|
|
// this seed has been removed from part_grid_ if it is expanded.
|
|
seeds_expanded.push_back(cp_seeds_[i]);
|
|
}
|
|
}
|
|
// Add seeds_expanded back into part_grid_ and reset cp_seeds_.
|
|
for (int i = 0; i < seeds_expanded.size(); ++i) {
|
|
InsertPartAfterAbsorb(seeds_expanded[i]);
|
|
}
|
|
cp_seeds_ = seeds_expanded;
|
|
}
|
|
|
|
// Pass 4: find math block satellite text partitions and merge them.
|
|
ProcessMathBlockSatelliteParts();
|
|
|
|
if (equationdetect_save_merged_image) { // For debug.
|
|
GetOutputTiffName("_merged", &outfile);
|
|
PaintColParts(outfile);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void EquationDetect::MergePartsByLocation() {
|
|
while (true) {
|
|
ColPartition* part = NULL;
|
|
// partitions that have been updated.
|
|
GenericVector<ColPartition*> parts_updated;
|
|
ColPartitionGridSearch gsearch(part_grid_);
|
|
gsearch.StartFullSearch();
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
if (!IsTextOrEquationType(part->type())) {
|
|
continue;
|
|
}
|
|
GenericVector<ColPartition*> parts_to_merge;
|
|
SearchByOverlap(part, &parts_to_merge);
|
|
if (parts_to_merge.empty()) {
|
|
continue;
|
|
}
|
|
|
|
// Merge parts_to_merge with part, and remove them from part_grid_.
|
|
part_grid_->RemoveBBox(part);
|
|
for (int i = 0; i < parts_to_merge.size(); ++i) {
|
|
ASSERT_HOST(parts_to_merge[i] != NULL && parts_to_merge[i] != part);
|
|
part->Absorb(parts_to_merge[i], NULL);
|
|
}
|
|
gsearch.RepositionIterator();
|
|
|
|
parts_updated.push_back(part);
|
|
}
|
|
|
|
if (parts_updated.empty()) { // Exit the loop
|
|
break;
|
|
}
|
|
|
|
// Re-insert parts_updated into part_grid_.
|
|
for (int i = 0; i < parts_updated.size(); ++i) {
|
|
InsertPartAfterAbsorb(parts_updated[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void EquationDetect::SearchByOverlap(
|
|
ColPartition* seed,
|
|
GenericVector<ColPartition*>* parts_overlap) {
|
|
ASSERT_HOST(seed != NULL && parts_overlap != NULL);
|
|
if (!IsTextOrEquationType(seed->type())) {
|
|
return;
|
|
}
|
|
ColPartitionGridSearch search(part_grid_);
|
|
const TBOX& seed_box(seed->bounding_box());
|
|
const int kRadNeighborCells = 30;
|
|
search.StartRadSearch((seed_box.left() + seed_box.right()) / 2,
|
|
(seed_box.top() + seed_box.bottom()) / 2,
|
|
kRadNeighborCells);
|
|
search.SetUniqueMode(true);
|
|
|
|
// Search iteratively.
|
|
ColPartition *part;
|
|
GenericVector<ColPartition*> parts;
|
|
const float kLargeOverlapTh = 0.95;
|
|
const float kEquXOverlap = 0.4, kEquYOverlap = 0.5;
|
|
while ((part = search.NextRadSearch()) != NULL) {
|
|
if (part == seed || !IsTextOrEquationType(part->type())) {
|
|
continue;
|
|
}
|
|
const TBOX& part_box(part->bounding_box());
|
|
bool merge = false;
|
|
|
|
float x_overlap_fraction = part_box.x_overlap_fraction(seed_box),
|
|
y_overlap_fraction = part_box.y_overlap_fraction(seed_box);
|
|
|
|
// If part is large overlapped with seed, then set merge to true.
|
|
if (x_overlap_fraction >= kLargeOverlapTh &&
|
|
y_overlap_fraction >= kLargeOverlapTh) {
|
|
merge = true;
|
|
} else if (seed->type() == PT_EQUATION &&
|
|
IsTextOrEquationType(part->type())) {
|
|
if ((x_overlap_fraction > kEquXOverlap && y_overlap_fraction > 0.0) ||
|
|
(x_overlap_fraction > 0.0 && y_overlap_fraction > kEquYOverlap)) {
|
|
merge = true;
|
|
}
|
|
}
|
|
|
|
if (merge) { // Remove the part from search and put it into parts.
|
|
search.RemoveBBox();
|
|
parts_overlap->push_back(part);
|
|
}
|
|
}
|
|
}
|
|
|
|
void EquationDetect::InsertPartAfterAbsorb(ColPartition* part) {
|
|
ASSERT_HOST(part);
|
|
|
|
// Before insert part back into part_grid_, we will need re-compute some
|
|
// of its attributes such as first_column_, last_column_. However, we still
|
|
// want to preserve its type.
|
|
BlobTextFlowType flow_type = part->flow();
|
|
PolyBlockType part_type = part->type();
|
|
BlobRegionType blob_type = part->blob_type();
|
|
|
|
// Call SetPartitionType to re-compute the attributes of part.
|
|
const TBOX& part_box(part->bounding_box());
|
|
int grid_x, grid_y;
|
|
part_grid_->GridCoords(
|
|
part_box.left(), part_box.bottom(), &grid_x, &grid_y);
|
|
part->SetPartitionType(resolution_, best_columns_[grid_y]);
|
|
|
|
// Reset the types back.
|
|
part->set_type(part_type);
|
|
part->set_blob_type(blob_type);
|
|
part->set_flow(flow_type);
|
|
part->SetBlobTypes();
|
|
|
|
// Insert into part_grid_.
|
|
part_grid_->InsertBBox(true, true, part);
|
|
}
|
|
|
|
void EquationDetect::IdentifySeedParts() {
|
|
ColPartitionGridSearch gsearch(part_grid_);
|
|
ColPartition *part = NULL;
|
|
gsearch.StartFullSearch();
|
|
|
|
GenericVector<ColPartition*> seeds1, seeds2;
|
|
// The left coordinates of indented text partitions.
|
|
GenericVector<int> indented_texts_left;
|
|
// The foreground density of text partitions.
|
|
GenericVector<float> texts_foreground_density;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
if (!IsTextOrEquationType(part->type())) {
|
|
continue;
|
|
}
|
|
part->ComputeSpecialBlobsDensity();
|
|
bool blobs_check = CheckSeedBlobsCount(part);
|
|
const int kTextBlobsTh = 20;
|
|
|
|
if (CheckSeedDensity(kMathDigitDensityTh1, kMathDigitDensityTh2, part) &&
|
|
blobs_check) {
|
|
// Passed high density threshold test, save into seeds1.
|
|
seeds1.push_back(part);
|
|
} else {
|
|
IndentType indent = IsIndented(part);
|
|
if (IsLeftIndented(indent) && blobs_check &&
|
|
CheckSeedDensity(kMathDigitDensityTh2, kMathDigitDensityTh2, part)) {
|
|
// Passed low density threshold test and is indented, save into seeds2.
|
|
seeds2.push_back(part);
|
|
} else if (!IsRightIndented(indent) &&
|
|
part->boxes_count() > kTextBlobsTh) {
|
|
// This is likely to be a text part, save the features.
|
|
const TBOX&box = part->bounding_box();
|
|
if (IsLeftIndented(indent)) {
|
|
indented_texts_left.push_back(box.left());
|
|
}
|
|
texts_foreground_density.push_back(ComputeForegroundDensity(box));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort the features collected from text regions.
|
|
indented_texts_left.sort();
|
|
texts_foreground_density.sort();
|
|
float foreground_density_th = 0.15; // Default value.
|
|
if (!texts_foreground_density.empty()) {
|
|
// Use the median of the texts_foreground_density.
|
|
foreground_density_th = 0.8 * texts_foreground_density[
|
|
texts_foreground_density.size() / 2];
|
|
}
|
|
|
|
for (int i = 0; i < seeds1.size(); ++i) {
|
|
const TBOX& box = seeds1[i]->bounding_box();
|
|
if (CheckSeedFgDensity(foreground_density_th, seeds1[i]) &&
|
|
!(IsLeftIndented(IsIndented(seeds1[i])) &&
|
|
CountAlignment(indented_texts_left, box.left()) >=
|
|
kLeftIndentAlignmentCountTh)) {
|
|
// Mark as PT_EQUATION type.
|
|
seeds1[i]->set_type(PT_EQUATION);
|
|
cp_seeds_.push_back(seeds1[i]);
|
|
} else { // Mark as PT_INLINE_EQUATION type.
|
|
seeds1[i]->set_type(PT_INLINE_EQUATION);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < seeds2.size(); ++i) {
|
|
if (CheckForSeed2(indented_texts_left, foreground_density_th, seeds2[i])) {
|
|
seeds2[i]->set_type(PT_EQUATION);
|
|
cp_seeds_.push_back(seeds2[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
float EquationDetect::ComputeForegroundDensity(const TBOX& tbox) {
|
|
Pix *pix_bi = lang_tesseract_->pix_binary();
|
|
int pix_height = pixGetHeight(pix_bi);
|
|
Box* box = boxCreate(tbox.left(), pix_height - tbox.top(),
|
|
tbox.width(), tbox.height());
|
|
Pix *pix_sub = pixClipRectangle(pix_bi, box, NULL);
|
|
l_float32 fract;
|
|
pixForegroundFraction(pix_sub, &fract);
|
|
pixDestroy(&pix_sub);
|
|
boxDestroy(&box);
|
|
|
|
return fract;
|
|
}
|
|
|
|
bool EquationDetect::CheckSeedFgDensity(const float density_th,
|
|
ColPartition* part) {
|
|
ASSERT_HOST(part);
|
|
|
|
// Split part horizontall, and check for each sub part.
|
|
GenericVector<TBOX> sub_boxes;
|
|
SplitCPHorLite(part, &sub_boxes);
|
|
float parts_passed = 0.0;
|
|
for (int i = 0; i < sub_boxes.size(); ++i) {
|
|
float density = ComputeForegroundDensity(sub_boxes[i]);
|
|
if (density < density_th) {
|
|
parts_passed++;
|
|
}
|
|
}
|
|
|
|
// If most sub parts passed, then we return true.
|
|
const float kSeedPartRatioTh = 0.3;
|
|
bool retval = (parts_passed / sub_boxes.size() >= kSeedPartRatioTh);
|
|
|
|
return retval;
|
|
}
|
|
|
|
void EquationDetect::SplitCPHor(ColPartition* part,
|
|
GenericVector<ColPartition*>* parts_splitted) {
|
|
ASSERT_HOST(part && parts_splitted);
|
|
if (part->median_width() == 0 || part->boxes_count() == 0) {
|
|
return;
|
|
}
|
|
|
|
// Make a copy of part, and reset parts_splitted.
|
|
ColPartition* right_part = part->CopyButDontOwnBlobs();
|
|
parts_splitted->delete_data_pointers();
|
|
parts_splitted->clear();
|
|
|
|
const double kThreshold = part->median_width() * 3.0;
|
|
bool found_split = true;
|
|
while (found_split) {
|
|
found_split = false;
|
|
BLOBNBOX_C_IT box_it(right_part->boxes());
|
|
// Blobs are sorted left side first. If blobs overlap,
|
|
// the previous blob may have a "more right" right side.
|
|
// Account for this by always keeping the largest "right"
|
|
// so far.
|
|
int previous_right = MIN_INT32;
|
|
|
|
// Look for the next split in the partition.
|
|
for (box_it.mark_cycle_pt(); !box_it.cycled_list(); box_it.forward()) {
|
|
const TBOX& box = box_it.data()->bounding_box();
|
|
if (previous_right != MIN_INT32 &&
|
|
box.left() - previous_right > kThreshold) {
|
|
// We have a split position. Split the partition in two pieces.
|
|
// Insert the left piece in the grid and keep processing the right.
|
|
int mid_x = (box.left() + previous_right) / 2;
|
|
ColPartition* left_part = right_part;
|
|
right_part = left_part->SplitAt(mid_x);
|
|
|
|
parts_splitted->push_back(left_part);
|
|
left_part->ComputeSpecialBlobsDensity();
|
|
found_split = true;
|
|
break;
|
|
}
|
|
|
|
// The right side of the previous blobs.
|
|
previous_right = MAX(previous_right, box.right());
|
|
}
|
|
}
|
|
|
|
// Add the last piece.
|
|
right_part->ComputeSpecialBlobsDensity();
|
|
parts_splitted->push_back(right_part);
|
|
}
|
|
|
|
void EquationDetect::SplitCPHorLite(ColPartition* part,
|
|
GenericVector<TBOX>* splitted_boxes) {
|
|
ASSERT_HOST(part && splitted_boxes);
|
|
splitted_boxes->clear();
|
|
if (part->median_width() == 0) {
|
|
return;
|
|
}
|
|
|
|
const double kThreshold = part->median_width() * 3.0;
|
|
|
|
// Blobs are sorted left side first. If blobs overlap,
|
|
// the previous blob may have a "more right" right side.
|
|
// Account for this by always keeping the largest "right"
|
|
// so far.
|
|
TBOX union_box;
|
|
int previous_right = MIN_INT32;
|
|
BLOBNBOX_C_IT box_it(part->boxes());
|
|
for (box_it.mark_cycle_pt(); !box_it.cycled_list(); box_it.forward()) {
|
|
const TBOX& box = box_it.data()->bounding_box();
|
|
if (previous_right != MIN_INT32 &&
|
|
box.left() - previous_right > kThreshold) {
|
|
// We have a split position.
|
|
splitted_boxes->push_back(union_box);
|
|
previous_right = MIN_INT32;
|
|
}
|
|
if (previous_right == MIN_INT32) {
|
|
union_box = box;
|
|
} else {
|
|
union_box += box;
|
|
}
|
|
// The right side of the previous blobs.
|
|
previous_right = MAX(previous_right, box.right());
|
|
}
|
|
|
|
// Add the last piece.
|
|
if (previous_right != MIN_INT32) {
|
|
splitted_boxes->push_back(union_box);
|
|
}
|
|
}
|
|
|
|
bool EquationDetect::CheckForSeed2(
|
|
const GenericVector<int>& indented_texts_left,
|
|
const float foreground_density_th,
|
|
ColPartition* part) {
|
|
ASSERT_HOST(part);
|
|
const TBOX& box = part->bounding_box();
|
|
|
|
// Check if it is aligned with any indented_texts_left.
|
|
if (!indented_texts_left.empty() &&
|
|
CountAlignment(indented_texts_left, box.left()) >=
|
|
kLeftIndentAlignmentCountTh) {
|
|
return false;
|
|
}
|
|
|
|
// Check the foreground density.
|
|
if (ComputeForegroundDensity(box) > foreground_density_th) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int EquationDetect::CountAlignment(
|
|
const GenericVector<int>& sorted_vec, const int val) const {
|
|
if (sorted_vec.empty()) {
|
|
return 0;
|
|
}
|
|
const int kDistTh = static_cast<int>(roundf(0.03 * resolution_));
|
|
int pos = sorted_vec.binary_search(val), count = 0;
|
|
|
|
// Search left side.
|
|
int index = pos;
|
|
while (index >= 0 && abs(val - sorted_vec[index--]) < kDistTh) {
|
|
count++;
|
|
}
|
|
|
|
// Search right side.
|
|
index = pos + 1;
|
|
while (index < sorted_vec.size() && sorted_vec[index++] - val < kDistTh) {
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
void EquationDetect::IdentifyInlineParts() {
|
|
ComputeCPsSuperBBox();
|
|
IdentifyInlinePartsHorizontal();
|
|
int textparts_linespacing = EstimateTextPartLineSpacing();
|
|
IdentifyInlinePartsVertical(true, textparts_linespacing);
|
|
IdentifyInlinePartsVertical(false, textparts_linespacing);
|
|
}
|
|
|
|
void EquationDetect::ComputeCPsSuperBBox() {
|
|
ColPartitionGridSearch gsearch(part_grid_);
|
|
ColPartition *part = NULL;
|
|
gsearch.StartFullSearch();
|
|
if (cps_super_bbox_) {
|
|
delete cps_super_bbox_;
|
|
}
|
|
cps_super_bbox_ = new TBOX();
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
(*cps_super_bbox_) += part->bounding_box();
|
|
}
|
|
}
|
|
|
|
void EquationDetect::IdentifyInlinePartsHorizontal() {
|
|
ASSERT_HOST(cps_super_bbox_);
|
|
GenericVector<ColPartition*> new_seeds;
|
|
const int kMarginDiffTh = IntCastRounded(
|
|
0.5 * lang_tesseract_->source_resolution());
|
|
const int kGapTh = static_cast<int>(roundf(
|
|
1.0 * lang_tesseract_->source_resolution()));
|
|
ColPartitionGridSearch search(part_grid_);
|
|
search.SetUniqueMode(true);
|
|
// The center x coordinate of the cp_super_bbox_.
|
|
int cps_cx = cps_super_bbox_->left() + cps_super_bbox_->width() / 2;
|
|
for (int i = 0; i < cp_seeds_.size(); ++i) {
|
|
ColPartition* part = cp_seeds_[i];
|
|
const TBOX& part_box(part->bounding_box());
|
|
int left_margin = part_box.left() - cps_super_bbox_->left(),
|
|
right_margin = cps_super_bbox_->right() - part_box.right();
|
|
bool right_to_left;
|
|
if (left_margin + kMarginDiffTh < right_margin &&
|
|
left_margin < kMarginDiffTh) {
|
|
// part is left aligned, so we search if it has any right neighbor.
|
|
search.StartSideSearch(
|
|
part_box.right(), part_box.top(), part_box.bottom());
|
|
right_to_left = false;
|
|
} else if (left_margin > cps_cx) {
|
|
// part locates on the right half on image, so search if it has any left
|
|
// neighbor.
|
|
search.StartSideSearch(
|
|
part_box.left(), part_box.top(), part_box.bottom());
|
|
right_to_left = true;
|
|
} else { // part is not an inline equation.
|
|
new_seeds.push_back(part);
|
|
continue;
|
|
}
|
|
ColPartition* neighbor = NULL;
|
|
bool side_neighbor_found = false;
|
|
while ((neighbor = search.NextSideSearch(right_to_left)) != NULL) {
|
|
const TBOX& neighbor_box(neighbor->bounding_box());
|
|
if (!IsTextOrEquationType(neighbor->type()) ||
|
|
part_box.x_gap(neighbor_box) > kGapTh ||
|
|
!part_box.major_y_overlap(neighbor_box) ||
|
|
part_box.major_x_overlap(neighbor_box)) {
|
|
continue;
|
|
}
|
|
// We have found one. Set the side_neighbor_found flag.
|
|
side_neighbor_found = true;
|
|
break;
|
|
}
|
|
if (!side_neighbor_found) { // Mark part as PT_INLINE_EQUATION.
|
|
part->set_type(PT_INLINE_EQUATION);
|
|
} else {
|
|
// Check the geometric feature of neighbor.
|
|
const TBOX& neighbor_box(neighbor->bounding_box());
|
|
if (neighbor_box.width() > part_box.width() &&
|
|
neighbor->type() != PT_EQUATION) { // Mark as PT_INLINE_EQUATION.
|
|
part->set_type(PT_INLINE_EQUATION);
|
|
} else { // part is not an inline equation type.
|
|
new_seeds.push_back(part);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reset the cp_seeds_ using the new_seeds.
|
|
cp_seeds_ = new_seeds;
|
|
}
|
|
|
|
int EquationDetect::EstimateTextPartLineSpacing() {
|
|
ColPartitionGridSearch gsearch(part_grid_);
|
|
|
|
// Get the y gap between text partitions;
|
|
ColPartition *current = NULL, *prev = NULL;
|
|
gsearch.StartFullSearch();
|
|
GenericVector<int> ygaps;
|
|
while ((current = gsearch.NextFullSearch()) != NULL) {
|
|
if (!PTIsTextType(current->type())) {
|
|
continue;
|
|
}
|
|
if (prev != NULL) {
|
|
const TBOX ¤t_box = current->bounding_box();
|
|
const TBOX &prev_box = prev->bounding_box();
|
|
// prev and current should be x major overlap and non y overlap.
|
|
if (current_box.major_x_overlap(prev_box) &&
|
|
!current_box.y_overlap(prev_box)) {
|
|
int gap = current_box.y_gap(prev_box);
|
|
if (gap < MIN(current_box.height(), prev_box.height())) {
|
|
// The gap should be smaller than the height of the bounding boxes.
|
|
ygaps.push_back(gap);
|
|
}
|
|
}
|
|
}
|
|
prev = current;
|
|
}
|
|
|
|
if (ygaps.size() < 8) { // We do not have enough data.
|
|
return -1;
|
|
}
|
|
|
|
// Compute the line spacing from ygaps: use the mean of the first half.
|
|
ygaps.sort();
|
|
int spacing = 0, count;
|
|
for (count = 0; count < ygaps.size() / 2; count++) {
|
|
spacing += ygaps[count];
|
|
}
|
|
return spacing / count;
|
|
}
|
|
|
|
void EquationDetect::IdentifyInlinePartsVertical(
|
|
const bool top_to_bottom, const int textparts_linespacing) {
|
|
if (cp_seeds_.empty()) {
|
|
return;
|
|
}
|
|
|
|
// Sort cp_seeds_.
|
|
if (top_to_bottom) { // From top to bottom.
|
|
cp_seeds_.sort(&SortCPByTopReverse);
|
|
} else { // From bottom to top.
|
|
cp_seeds_.sort(&SortCPByBottom);
|
|
}
|
|
|
|
GenericVector<ColPartition*> new_seeds;
|
|
for (int i = 0; i < cp_seeds_.size(); ++i) {
|
|
ColPartition* part = cp_seeds_[i];
|
|
// If we sort cp_seeds_ from top to bottom, then for each cp_seeds_, we look
|
|
// for its top neighbors, so that if two/more inline regions are connected
|
|
// to each other, then we will identify the top one, and then use it to
|
|
// identify the bottom one.
|
|
if (IsInline(!top_to_bottom, textparts_linespacing, part)) {
|
|
part->set_type(PT_INLINE_EQUATION);
|
|
} else {
|
|
new_seeds.push_back(part);
|
|
}
|
|
}
|
|
cp_seeds_ = new_seeds;
|
|
}
|
|
|
|
bool EquationDetect::IsInline(const bool search_bottom,
|
|
const int textparts_linespacing,
|
|
ColPartition* part) {
|
|
ASSERT_HOST(part != NULL);
|
|
// Look for its nearest vertical neighbor that hardly overlaps in y but
|
|
// largely overlaps in x.
|
|
ColPartitionGridSearch search(part_grid_);
|
|
ColPartition *neighbor = NULL;
|
|
const TBOX& part_box(part->bounding_box());
|
|
const float kYGapRatioTh = 1.0;
|
|
|
|
if (search_bottom) {
|
|
search.StartVerticalSearch(part_box.left(), part_box.right(),
|
|
part_box.bottom());
|
|
} else {
|
|
search.StartVerticalSearch(part_box.left(), part_box.right(),
|
|
part_box.top());
|
|
}
|
|
search.SetUniqueMode(true);
|
|
while ((neighbor = search.NextVerticalSearch(search_bottom)) != NULL) {
|
|
const TBOX& neighbor_box(neighbor->bounding_box());
|
|
if (part_box.y_gap(neighbor_box) > kYGapRatioTh *
|
|
MIN(part_box.height(), neighbor_box.height())) {
|
|
// Finished searching.
|
|
break;
|
|
}
|
|
if (!PTIsTextType(neighbor->type())) {
|
|
continue;
|
|
}
|
|
|
|
// Check if neighbor and part is inline similar.
|
|
const float kHeightRatioTh = 0.5;
|
|
const int kYGapTh = textparts_linespacing > 0 ?
|
|
textparts_linespacing + static_cast<int>(roundf(0.02 * resolution_)):
|
|
static_cast<int>(roundf(0.05 * resolution_)); // Default value.
|
|
if (part_box.x_overlap(neighbor_box) && // Location feature.
|
|
part_box.y_gap(neighbor_box) <= kYGapTh && // Line spacing.
|
|
// Geo feature.
|
|
static_cast<float>(MIN(part_box.height(), neighbor_box.height())) /
|
|
MAX(part_box.height(), neighbor_box.height()) > kHeightRatioTh) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool EquationDetect::CheckSeedBlobsCount(ColPartition* part) {
|
|
if (!part) {
|
|
return false;
|
|
}
|
|
const int kSeedMathBlobsCount = 2;
|
|
const int kSeedMathDigitBlobsCount = 5;
|
|
|
|
int blobs = part->boxes_count(),
|
|
math_blobs = part->SpecialBlobsCount(BSTT_MATH),
|
|
digit_blobs = part->SpecialBlobsCount(BSTT_DIGIT);
|
|
if (blobs < kSeedBlobsCountTh || math_blobs <= kSeedMathBlobsCount ||
|
|
math_blobs + digit_blobs <= kSeedMathDigitBlobsCount) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool EquationDetect::CheckSeedDensity(
|
|
const float math_density_high,
|
|
const float math_density_low,
|
|
const ColPartition* part) const {
|
|
ASSERT_HOST(part);
|
|
float math_digit_density = part->SpecialBlobsDensity(BSTT_MATH)
|
|
+ part->SpecialBlobsDensity(BSTT_DIGIT);
|
|
float italic_density = part->SpecialBlobsDensity(BSTT_ITALIC);
|
|
if (math_digit_density > math_density_high) {
|
|
return true;
|
|
}
|
|
if (math_digit_density + italic_density > kMathItalicDensityTh &&
|
|
math_digit_density > math_density_low) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
EquationDetect::IndentType EquationDetect::IsIndented(ColPartition* part) {
|
|
ASSERT_HOST(part);
|
|
|
|
ColPartitionGridSearch search(part_grid_);
|
|
ColPartition *neighbor = NULL;
|
|
const TBOX& part_box(part->bounding_box());
|
|
const int kXGapTh = static_cast<int>(roundf(0.5 * resolution_));
|
|
const int kRadiusTh = static_cast<int>(roundf(3.0 * resolution_));
|
|
const int kYGapTh = static_cast<int>(roundf(0.5 * resolution_));
|
|
|
|
// Here we use a simple approximation algorithm: from the center of part, We
|
|
// perform the radius search, and check if we can find a neighboring parition
|
|
// that locates on the top/bottom left of part.
|
|
search.StartRadSearch((part_box.left() + part_box.right()) / 2,
|
|
(part_box.top() + part_box.bottom()) / 2, kRadiusTh);
|
|
search.SetUniqueMode(true);
|
|
bool left_indented = false, right_indented = false;
|
|
while ((neighbor = search.NextRadSearch()) != NULL &&
|
|
(!left_indented || !right_indented)) {
|
|
if (neighbor == part) {
|
|
continue;
|
|
}
|
|
const TBOX& neighbor_box(neighbor->bounding_box());
|
|
|
|
if (part_box.major_y_overlap(neighbor_box) &&
|
|
part_box.x_gap(neighbor_box) < kXGapTh) {
|
|
// When this happens, it is likely part is a fragment of an
|
|
// over-segmented colpartition. So we return false.
|
|
return NO_INDENT;
|
|
}
|
|
|
|
if (!IsTextOrEquationType(neighbor->type())) {
|
|
continue;
|
|
}
|
|
|
|
// The neighbor should be above/below part, and overlap in x direction.
|
|
if (!part_box.x_overlap(neighbor_box) || part_box.y_overlap(neighbor_box)) {
|
|
continue;
|
|
}
|
|
|
|
if (part_box.y_gap(neighbor_box) < kYGapTh) {
|
|
int left_gap = part_box.left() - neighbor_box.left();
|
|
int right_gap = neighbor_box.right() - part_box.right();
|
|
if (left_gap > kXGapTh) {
|
|
left_indented = true;
|
|
}
|
|
if (right_gap > kXGapTh) {
|
|
right_indented = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (left_indented && right_indented) {
|
|
return BOTH_INDENT;
|
|
}
|
|
if (left_indented) {
|
|
return LEFT_INDENT;
|
|
}
|
|
if (right_indented) {
|
|
return RIGHT_INDENT;
|
|
}
|
|
return NO_INDENT;
|
|
}
|
|
|
|
bool EquationDetect::ExpandSeed(ColPartition* seed) {
|
|
if (seed == NULL || // This seed has been absorbed by other seeds.
|
|
seed->IsVerticalType()) { // We skip vertical type right now.
|
|
return false;
|
|
}
|
|
|
|
// Expand in four directions.
|
|
GenericVector<ColPartition*> parts_to_merge;
|
|
ExpandSeedHorizontal(true, seed, &parts_to_merge);
|
|
ExpandSeedHorizontal(false, seed, &parts_to_merge);
|
|
ExpandSeedVertical(true, seed, &parts_to_merge);
|
|
ExpandSeedVertical(false, seed, &parts_to_merge);
|
|
SearchByOverlap(seed, &parts_to_merge);
|
|
|
|
if (parts_to_merge.empty()) { // We don't find any partition to merge.
|
|
return false;
|
|
}
|
|
|
|
// Merge all partitions in parts_to_merge with seed. We first remove seed
|
|
// from part_grid_ as its bounding box is going to expand. Then we add it
|
|
// back after it aborbs all parts_to_merge parititions.
|
|
part_grid_->RemoveBBox(seed);
|
|
for (int i = 0; i < parts_to_merge.size(); ++i) {
|
|
ColPartition* part = parts_to_merge[i];
|
|
if (part->type() == PT_EQUATION) {
|
|
// If part is in cp_seeds_, then we mark it as NULL so that we won't
|
|
// process it again.
|
|
for (int j = 0; j < cp_seeds_.size(); ++j) {
|
|
if (part == cp_seeds_[j]) {
|
|
cp_seeds_[j] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// part has already been removed from part_grid_ in function
|
|
// ExpandSeedHorizontal/ExpandSeedVertical.
|
|
seed->Absorb(part, NULL);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void EquationDetect::ExpandSeedHorizontal(
|
|
const bool search_left,
|
|
ColPartition* seed,
|
|
GenericVector<ColPartition*>* parts_to_merge) {
|
|
ASSERT_HOST(seed != NULL && parts_to_merge != NULL);
|
|
const float kYOverlapTh = 0.6;
|
|
const int kXGapTh = static_cast<int>(roundf(0.2 * resolution_));
|
|
|
|
ColPartitionGridSearch search(part_grid_);
|
|
const TBOX& seed_box(seed->bounding_box());
|
|
int x = search_left ? seed_box.left() : seed_box.right();
|
|
search.StartSideSearch(x, seed_box.bottom(), seed_box.top());
|
|
search.SetUniqueMode(true);
|
|
|
|
// Search iteratively.
|
|
ColPartition *part = NULL;
|
|
while ((part = search.NextSideSearch(search_left)) != NULL) {
|
|
if (part == seed) {
|
|
continue;
|
|
}
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.x_gap(seed_box) > kXGapTh) { // Out of scope.
|
|
break;
|
|
}
|
|
|
|
// Check part location.
|
|
if ((part_box.left() >= seed_box.left() && search_left) ||
|
|
(part_box.right() <= seed_box.right() && !search_left)) {
|
|
continue;
|
|
}
|
|
|
|
if (part->type() != PT_EQUATION) { // Non-equation type.
|
|
// Skip PT_LINLINE_EQUATION and non text type.
|
|
if (part->type() == PT_INLINE_EQUATION ||
|
|
(!IsTextOrEquationType(part->type()) &&
|
|
part->blob_type() != BRT_HLINE)) {
|
|
continue;
|
|
}
|
|
// For other types, it should be the near small neighbor of seed.
|
|
if (!IsNearSmallNeighbor(seed_box, part_box) ||
|
|
!CheckSeedNeighborDensity(part)) {
|
|
continue;
|
|
}
|
|
} else { // Equation type, check the y overlap.
|
|
if (part_box.y_overlap_fraction(seed_box) < kYOverlapTh &&
|
|
seed_box.y_overlap_fraction(part_box) < kYOverlapTh) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Passed the check, delete it from search and add into parts_to_merge.
|
|
search.RemoveBBox();
|
|
parts_to_merge->push_back(part);
|
|
}
|
|
}
|
|
|
|
void EquationDetect::ExpandSeedVertical(
|
|
const bool search_bottom,
|
|
ColPartition* seed,
|
|
GenericVector<ColPartition*>* parts_to_merge) {
|
|
ASSERT_HOST(seed != NULL && parts_to_merge != NULL &&
|
|
cps_super_bbox_ != NULL);
|
|
const float kXOverlapTh = 0.4;
|
|
const int kYGapTh = static_cast<int>(roundf(0.2 * resolution_));
|
|
|
|
ColPartitionGridSearch search(part_grid_);
|
|
const TBOX& seed_box(seed->bounding_box());
|
|
int y = search_bottom ? seed_box.bottom() : seed_box.top();
|
|
search.StartVerticalSearch(
|
|
cps_super_bbox_->left(), cps_super_bbox_->right(), y);
|
|
search.SetUniqueMode(true);
|
|
|
|
// Search iteratively.
|
|
ColPartition *part = NULL;
|
|
GenericVector<ColPartition*> parts;
|
|
int skipped_min_top = INT_MAX, skipped_max_bottom = -1;
|
|
while ((part = search.NextVerticalSearch(search_bottom)) != NULL) {
|
|
if (part == seed) {
|
|
continue;
|
|
}
|
|
const TBOX& part_box(part->bounding_box());
|
|
|
|
if (part_box.y_gap(seed_box) > kYGapTh) { // Out of scope.
|
|
break;
|
|
}
|
|
|
|
// Check part location.
|
|
if ((part_box.bottom() >= seed_box.bottom() && search_bottom) ||
|
|
(part_box.top() <= seed_box.top() && !search_bottom)) {
|
|
continue;
|
|
}
|
|
|
|
bool skip_part = false;
|
|
if (part->type() != PT_EQUATION) { // Non-equation type.
|
|
// Skip PT_LINLINE_EQUATION and non text type.
|
|
if (part->type() == PT_INLINE_EQUATION ||
|
|
(!IsTextOrEquationType(part->type()) &&
|
|
part->blob_type() != BRT_HLINE)) {
|
|
skip_part = true;
|
|
} else if (!IsNearSmallNeighbor(seed_box, part_box) ||
|
|
!CheckSeedNeighborDensity(part)) {
|
|
// For other types, it should be the near small neighbor of seed.
|
|
skip_part = true;
|
|
}
|
|
} else { // Equation type, check the x overlap.
|
|
if (part_box.x_overlap_fraction(seed_box) < kXOverlapTh &&
|
|
seed_box.x_overlap_fraction(part_box) < kXOverlapTh) {
|
|
skip_part = true;
|
|
}
|
|
}
|
|
if (skip_part) {
|
|
if (part->type() != PT_EQUATION) {
|
|
if (skipped_min_top > part_box.top()) {
|
|
skipped_min_top = part_box.top();
|
|
}
|
|
if (skipped_max_bottom < part_box.bottom()) {
|
|
skipped_max_bottom = part_box.bottom();
|
|
}
|
|
}
|
|
} else {
|
|
parts.push_back(part);
|
|
}
|
|
}
|
|
|
|
// For every part in parts, we need verify it is not above skipped_min_top
|
|
// when search top, or not below skipped_max_bottom when search bottom. I.e.,
|
|
// we will skip a part if it looks like:
|
|
// search bottom | search top
|
|
// seed: ****************** | part: **********
|
|
// skipped: xxx | skipped: xxx
|
|
// part: ********** | seed: ***********
|
|
for (int i = 0; i < parts.size(); i++) {
|
|
const TBOX& part_box(parts[i]->bounding_box());
|
|
if ((search_bottom && part_box.top() <= skipped_max_bottom) ||
|
|
(!search_bottom && part_box.bottom() >= skipped_min_top)) {
|
|
continue;
|
|
}
|
|
// Add parts[i] into parts_to_merge, and delete it from part_grid_.
|
|
parts_to_merge->push_back(parts[i]);
|
|
part_grid_->RemoveBBox(parts[i]);
|
|
}
|
|
}
|
|
|
|
bool EquationDetect::IsNearSmallNeighbor(const TBOX& seed_box,
|
|
const TBOX& part_box) const {
|
|
const int kXGapTh = static_cast<int>(roundf(0.25 * resolution_));
|
|
const int kYGapTh = static_cast<int>(roundf(0.05 * resolution_));
|
|
|
|
// Check geometric feature.
|
|
if (part_box.height() > seed_box.height() ||
|
|
part_box.width() > seed_box.width()) {
|
|
return false;
|
|
}
|
|
|
|
// Check overlap and distance.
|
|
if ((!part_box.major_x_overlap(seed_box) ||
|
|
part_box.y_gap(seed_box) > kYGapTh) &&
|
|
(!part_box.major_y_overlap(seed_box) ||
|
|
part_box.x_gap(seed_box) > kXGapTh)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool EquationDetect::CheckSeedNeighborDensity(const ColPartition* part) const {
|
|
ASSERT_HOST(part);
|
|
if (part->boxes_count() < kSeedBlobsCountTh) {
|
|
// Too few blobs, skip the check.
|
|
return true;
|
|
}
|
|
|
|
// We check the math blobs density and the unclear blobs density.
|
|
if (part->SpecialBlobsDensity(BSTT_MATH) +
|
|
part->SpecialBlobsDensity(BSTT_DIGIT) > kMathDigitDensityTh1 ||
|
|
part->SpecialBlobsDensity(BSTT_UNCLEAR) > kUnclearDensityTh) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void EquationDetect::ProcessMathBlockSatelliteParts() {
|
|
// Iterate over part_grid_, and find all parts that are text type but not
|
|
// equation type.
|
|
ColPartition *part = NULL;
|
|
GenericVector<ColPartition*> text_parts;
|
|
ColPartitionGridSearch gsearch(part_grid_);
|
|
gsearch.StartFullSearch();
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
if (part->type() == PT_FLOWING_TEXT || part->type() == PT_HEADING_TEXT) {
|
|
text_parts.push_back(part);
|
|
}
|
|
}
|
|
if (text_parts.empty()) {
|
|
return;
|
|
}
|
|
|
|
// Compute the medium height of the text_parts.
|
|
text_parts.sort(&SortCPByHeight);
|
|
const TBOX& text_box = text_parts[text_parts.size() / 2]->bounding_box();
|
|
int med_height = text_box.height();
|
|
if (text_parts.size() % 2 == 0 && text_parts.size() > 1) {
|
|
const TBOX& text_box =
|
|
text_parts[text_parts.size() / 2 - 1]->bounding_box();
|
|
med_height = static_cast<int>(roundf(
|
|
0.5 * (text_box.height() + med_height)));
|
|
}
|
|
|
|
// Iterate every text_parts and check if it is a math block satellite.
|
|
for (int i = 0; i < text_parts.size(); ++i) {
|
|
const TBOX& text_box(text_parts[i]->bounding_box());
|
|
if (text_box.height() > med_height) {
|
|
continue;
|
|
}
|
|
GenericVector<ColPartition*> math_blocks;
|
|
if (!IsMathBlockSatellite(text_parts[i], &math_blocks)) {
|
|
continue;
|
|
}
|
|
|
|
// Found. merge text_parts[i] with math_blocks.
|
|
part_grid_->RemoveBBox(text_parts[i]);
|
|
text_parts[i]->set_type(PT_EQUATION);
|
|
for (int j = 0; j < math_blocks.size(); ++j) {
|
|
part_grid_->RemoveBBox(math_blocks[j]);
|
|
text_parts[i]->Absorb(math_blocks[j], NULL);
|
|
}
|
|
InsertPartAfterAbsorb(text_parts[i]);
|
|
}
|
|
}
|
|
|
|
bool EquationDetect::IsMathBlockSatellite(
|
|
ColPartition* part, GenericVector<ColPartition*>* math_blocks) {
|
|
ASSERT_HOST(part != NULL && math_blocks != NULL);
|
|
math_blocks->clear();
|
|
const TBOX& part_box(part->bounding_box());
|
|
// Find the top/bottom nearest neighbor of part.
|
|
ColPartition *neighbors[2];
|
|
int y_gaps[2] = {INT_MAX, INT_MAX};
|
|
// The horizontal boundary of the neighbors.
|
|
int neighbors_left = INT_MAX, neighbors_right = 0;
|
|
for (int i = 0; i < 2; ++i) {
|
|
neighbors[i] = SearchNNVertical(i != 0, part);
|
|
if (neighbors[i]) {
|
|
const TBOX& neighbor_box = neighbors[i]->bounding_box();
|
|
y_gaps[i] = neighbor_box.y_gap(part_box);
|
|
if (neighbor_box.left() < neighbors_left) {
|
|
neighbors_left = neighbor_box.left();
|
|
}
|
|
if (neighbor_box.right() > neighbors_right) {
|
|
neighbors_right = neighbor_box.right();
|
|
}
|
|
}
|
|
}
|
|
if (neighbors[0] == neighbors[1]) {
|
|
// This happens when part is inside neighbor.
|
|
neighbors[1] = NULL;
|
|
y_gaps[1] = INT_MAX;
|
|
}
|
|
|
|
// Check if part is within [neighbors_left, neighbors_right].
|
|
if (part_box.left() < neighbors_left || part_box.right() > neighbors_right) {
|
|
return false;
|
|
}
|
|
|
|
// Get the index of the near one in neighbors.
|
|
int index = y_gaps[0] < y_gaps[1] ? 0 : 1;
|
|
|
|
// Check the near one.
|
|
if (IsNearMathNeighbor(y_gaps[index], neighbors[index])) {
|
|
math_blocks->push_back(neighbors[index]);
|
|
} else {
|
|
// If the near one failed the check, then we skip checking the far one.
|
|
return false;
|
|
}
|
|
|
|
// Check the far one.
|
|
index = 1 - index;
|
|
if (IsNearMathNeighbor(y_gaps[index], neighbors[index])) {
|
|
math_blocks->push_back(neighbors[index]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ColPartition* EquationDetect::SearchNNVertical(
|
|
const bool search_bottom, const ColPartition* part) {
|
|
ASSERT_HOST(part);
|
|
ColPartition *nearest_neighbor = NULL, *neighbor = NULL;
|
|
const int kYGapTh = static_cast<int>(roundf(resolution_ * 0.5));
|
|
|
|
ColPartitionGridSearch search(part_grid_);
|
|
search.SetUniqueMode(true);
|
|
const TBOX& part_box(part->bounding_box());
|
|
int y = search_bottom ? part_box.bottom() : part_box.top();
|
|
search.StartVerticalSearch(part_box.left(), part_box.right(), y);
|
|
int min_y_gap = INT_MAX;
|
|
while ((neighbor = search.NextVerticalSearch(search_bottom)) != NULL) {
|
|
if (neighbor == part || !IsTextOrEquationType(neighbor->type())) {
|
|
continue;
|
|
}
|
|
const TBOX& neighbor_box(neighbor->bounding_box());
|
|
int y_gap = neighbor_box.y_gap(part_box);
|
|
if (y_gap > kYGapTh) { // Out of scope.
|
|
break;
|
|
}
|
|
if (!neighbor_box.major_x_overlap(part_box) ||
|
|
(search_bottom && neighbor_box.bottom() > part_box.bottom()) ||
|
|
(!search_bottom && neighbor_box.top() < part_box.top())) {
|
|
continue;
|
|
}
|
|
if (y_gap < min_y_gap) {
|
|
min_y_gap = y_gap;
|
|
nearest_neighbor = neighbor;
|
|
}
|
|
}
|
|
|
|
return nearest_neighbor;
|
|
}
|
|
|
|
bool EquationDetect::IsNearMathNeighbor(
|
|
const int y_gap, const ColPartition *neighbor) const {
|
|
if (!neighbor) {
|
|
return false;
|
|
}
|
|
const int kYGapTh = static_cast<int>(roundf(resolution_ * 0.1));
|
|
return neighbor->type() == PT_EQUATION && y_gap <= kYGapTh;
|
|
}
|
|
|
|
void EquationDetect::GetOutputTiffName(const char* name,
|
|
STRING* image_name) const {
|
|
ASSERT_HOST(image_name && name);
|
|
char page[50];
|
|
snprintf(page, sizeof(page), "%04d", page_count_);
|
|
*image_name = STRING(lang_tesseract_->imagebasename) + page + name + ".tif";
|
|
}
|
|
|
|
void EquationDetect::PaintSpecialTexts(const STRING& outfile) const {
|
|
Pix *pix = NULL, *pixBi = lang_tesseract_->pix_binary();
|
|
pix = pixConvertTo32(pixBi);
|
|
ColPartitionGridSearch gsearch(part_grid_);
|
|
ColPartition* part = NULL;
|
|
gsearch.StartFullSearch();
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
BLOBNBOX_C_IT blob_it(part->boxes());
|
|
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
|
|
RenderSpecialText(pix, blob_it.data());
|
|
}
|
|
}
|
|
|
|
pixWrite(outfile.string(), pix, IFF_TIFF_LZW);
|
|
pixDestroy(&pix);
|
|
}
|
|
|
|
void EquationDetect::PaintColParts(const STRING& outfile) const {
|
|
Pix *pix = pixConvertTo32(lang_tesseract_->BestPix());
|
|
ColPartitionGridSearch gsearch(part_grid_);
|
|
gsearch.StartFullSearch();
|
|
ColPartition* part = NULL;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
const TBOX& tbox = part->bounding_box();
|
|
Box *box = boxCreate(tbox.left(), pixGetHeight(pix) - tbox.top(),
|
|
tbox.width(), tbox.height());
|
|
if (part->type() == PT_EQUATION) {
|
|
pixRenderBoxArb(pix, box, 5, 255, 0, 0);
|
|
} else if (part->type() == PT_INLINE_EQUATION) {
|
|
pixRenderBoxArb(pix, box, 5, 0, 255, 0);
|
|
} else {
|
|
pixRenderBoxArb(pix, box, 5, 0, 0, 255);
|
|
}
|
|
boxDestroy(&box);
|
|
}
|
|
|
|
pixWrite(outfile.string(), pix, IFF_TIFF_LZW);
|
|
pixDestroy(&pix);
|
|
}
|
|
|
|
void EquationDetect::PrintSpecialBlobsDensity(const ColPartition* part) const {
|
|
ASSERT_HOST(part);
|
|
TBOX box(part->bounding_box());
|
|
int h = pixGetHeight(lang_tesseract_->BestPix());
|
|
tprintf("Printing special blobs density values for ColParition (t=%d,b=%d) ",
|
|
h - box.top(), h - box.bottom());
|
|
box.print();
|
|
tprintf("blobs count = %d, density = ", part->boxes_count());
|
|
for (int i = 0; i < BSTT_COUNT; ++i) {
|
|
BlobSpecialTextType type = static_cast<BlobSpecialTextType>(i);
|
|
tprintf("%d:%f ", i, part->SpecialBlobsDensity(type));
|
|
}
|
|
tprintf("\n");
|
|
}
|
|
|
|
}; // namespace tesseract
|