tesseract/unittest/mastertrainer_test.cc
2019-01-21 17:36:08 +01:00

309 lines
12 KiB
C++

// (C) Copyright 2017, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Although this is a trivial-looking test, it exercises a lot of code:
// SampleIterator has to correctly iterate over the correct characters, or
// it will fail.
// The canonical and cloud features computed by TrainingSampleSet need to
// be correct, along with the distance caches, organizing samples by font
// and class, indexing of features, distance calculations.
// IntFeatureDist has to work, or the canonical samples won't work.
// Mastertrainer has ability to read tr files and set itself up tested.
// Finally the serialize/deserialize test ensures that MasterTrainer,
// TrainingSampleSet, TrainingSample can all serialize/deserialize correctly
// enough to reproduce the same results.
#include <string>
#include <utility>
#include <vector>
#include "absl/strings/numbers.h" // for safe_strto32
#include "absl/strings/str_split.h" // for absl::StrSplit
#include "include_gunit.h"
#include "genericvector.h"
#include "log.h" // for LOG
#include "unicharset.h"
#include "errorcounter.h"
#include "mastertrainer.h"
#include "shapeclassifier.h"
#include "shapetable.h"
#include "trainingsample.h"
#include "commontraining.h"
#include "tessopt.h" // tessoptind
// Commontraining command-line arguments for font_properties, xheights and
// unicharset.
DECLARE_STRING_PARAM_FLAG(F);
DECLARE_STRING_PARAM_FLAG(X);
DECLARE_STRING_PARAM_FLAG(U);
DECLARE_STRING_PARAM_FLAG(output_trainer);
// Specs of the MockClassifier.
static const int kNumTopNErrs = 10;
static const int kNumTop2Errs = kNumTopNErrs + 20;
static const int kNumTop1Errs = kNumTop2Errs + 30;
static const int kNumTopTopErrs = kNumTop1Errs + 25;
static const int kNumNonReject = 1000;
static const int kNumCorrect = kNumNonReject - kNumTop1Errs;
// The total number of answers is given by the number of non-rejects plus
// all the multiple answers.
static const int kNumAnswers = kNumNonReject + 2 * (kNumTop2Errs - kNumTopNErrs) +
(kNumTop1Errs - kNumTop2Errs) +
(kNumTopTopErrs - kNumTop1Errs);
static bool safe_strto32(const std::string& str, int* pResult)
{
long n = strtol(str.c_str(), nullptr, 0);
*pResult = n;
return true;
}
namespace tesseract {
// Mock ShapeClassifier that cheats by looking at the correct answer, and
// creates a specific pattern of errors that can be tested.
class MockClassifier : public ShapeClassifier {
public:
explicit MockClassifier(ShapeTable* shape_table)
: shape_table_(shape_table), num_done_(0), done_bad_font_(false) {
// Add a false font answer to the shape table. We pick a random unichar_id,
// add a new shape for it with a false font. Font must actually exist in
// the font table, but not match anything in the first 1000 samples.
false_unichar_id_ = 67;
false_shape_ = shape_table_->AddShape(false_unichar_id_, 25);
}
virtual ~MockClassifier() {}
// Classifies the given [training] sample, writing to results.
// If debug is non-zero, then various degrees of classifier dependent debug
// information is provided.
// If keep_this (a shape index) is >= 0, then the results should always
// contain keep_this, and (if possible) anything of intermediate confidence.
// The return value is the number of classes saved in results.
virtual int ClassifySample(const TrainingSample& sample, Pix* page_pix,
int debug, UNICHAR_ID keep_this,
GenericVector<ShapeRating>* results) {
results->clear();
// Everything except the first kNumNonReject is a reject.
if (++num_done_ > kNumNonReject) return 0;
int class_id = sample.class_id();
int font_id = sample.font_id();
int shape_id = shape_table_->FindShape(class_id, font_id);
// Get ids of some wrong answers.
int wrong_id1 = shape_id > 10 ? shape_id - 1 : shape_id + 1;
int wrong_id2 = shape_id > 10 ? shape_id - 2 : shape_id + 2;
if (num_done_ <= kNumTopNErrs) {
// The first kNumTopNErrs are top-n errors.
results->push_back(ShapeRating(wrong_id1, 1.0f));
} else if (num_done_ <= kNumTop2Errs) {
// The next kNumTop2Errs - kNumTopNErrs are top-2 errors.
results->push_back(ShapeRating(wrong_id1, 1.0f));
results->push_back(ShapeRating(wrong_id2, 0.875f));
results->push_back(ShapeRating(shape_id, 0.75f));
} else if (num_done_ <= kNumTop1Errs) {
// The next kNumTop1Errs - kNumTop2Errs are top-1 errors.
results->push_back(ShapeRating(wrong_id1, 1.0f));
results->push_back(ShapeRating(shape_id, 0.8f));
} else if (num_done_ <= kNumTopTopErrs) {
// The next kNumTopTopErrs - kNumTop1Errs are cases where the actual top
// is not correct, but do not count as a top-1 error because the rating
// is close enough to the top answer.
results->push_back(ShapeRating(wrong_id1, 1.0f));
results->push_back(ShapeRating(shape_id, 0.99f));
} else if (!done_bad_font_ && class_id == false_unichar_id_) {
// There is a single character with a bad font.
results->push_back(ShapeRating(false_shape_, 1.0f));
done_bad_font_ = true;
} else {
// Everything else is correct.
results->push_back(ShapeRating(shape_id, 1.0f));
}
return results->size();
}
// Provides access to the ShapeTable that this classifier works with.
virtual const ShapeTable* GetShapeTable() const { return shape_table_; }
private:
// Borrowed pointer to the ShapeTable.
ShapeTable* shape_table_;
// Unichar_id of a random character that occurs after the first 60 samples.
int false_unichar_id_;
// Shape index of prepared false answer for false_unichar_id.
int false_shape_;
// The number of classifications we have processed.
int num_done_;
// True after the false font has been emitted.
bool done_bad_font_;
};
} // namespace tesseract
namespace {
using tesseract::MasterTrainer;
using tesseract::Shape;
using tesseract::ShapeTable;
using tesseract::UnicharAndFonts;
const double kMin1lDistance = 0.25;
// The fixture for testing Tesseract.
class MasterTrainerTest : public testing::Test {
protected:
std::string TestDataNameToPath(const std::string& name) {
return file::JoinPath(TESTING_DIR, name);
}
std::string TessdataPath() {
return TESSDATA_DIR;
}
std::string TmpNameToPath(const std::string& name) {
return file::JoinPath(FLAGS_test_tmpdir, name);
}
MasterTrainerTest() {
shape_table_ = nullptr;
master_trainer_ = nullptr;
}
~MasterTrainerTest() {
delete master_trainer_;
delete shape_table_;
}
// Initializes the master_trainer_ and shape_table_.
// if load_from_tmp, then reloads a master trainer that was saved by a
// previous call in which it was false.
void LoadMasterTrainer() {
FLAGS_output_trainer = TmpNameToPath("tmp_trainer").c_str();
FLAGS_F = file::JoinPath(LANGDATA_DIR, "font_properties").c_str();
FLAGS_X = TestDataNameToPath("eng.xheights").c_str();
FLAGS_U = TestDataNameToPath("eng.unicharset").c_str();
std::string tr_file_name(TestDataNameToPath("eng.Arial.exp0.tr"));
const char* argv[] = {tr_file_name.c_str()};
int argc = 1;
STRING file_prefix;
delete master_trainer_;
delete shape_table_;
shape_table_ = nullptr;
tessoptind = 0;
master_trainer_ =
LoadTrainingData(argc, argv, false, &shape_table_, &file_prefix);
EXPECT_TRUE(master_trainer_ != nullptr);
EXPECT_TRUE(shape_table_ != nullptr);
}
// EXPECTs that the distance between I and l in Arial is 0 and that the
// distance to 1 is significantly not 0.
void VerifyIl1() {
// Find the font id for Arial.
int font_id = master_trainer_->GetFontInfoId("Arial");
EXPECT_GE(font_id, 0);
// Track down the characters we are interested in.
int unichar_I = master_trainer_->unicharset().unichar_to_id("I");
EXPECT_GT(unichar_I, 0);
int unichar_l = master_trainer_->unicharset().unichar_to_id("l");
EXPECT_GT(unichar_l, 0);
int unichar_1 = master_trainer_->unicharset().unichar_to_id("1");
EXPECT_GT(unichar_1, 0);
// Now get the shape ids.
int shape_I = shape_table_->FindShape(unichar_I, font_id);
EXPECT_GE(shape_I, 0);
int shape_l = shape_table_->FindShape(unichar_l, font_id);
EXPECT_GE(shape_l, 0);
int shape_1 = shape_table_->FindShape(unichar_1, font_id);
EXPECT_GE(shape_1, 0);
float dist_I_l =
master_trainer_->ShapeDistance(*shape_table_, shape_I, shape_l);
// No tolerance here. We expect that I and l should match exactly.
EXPECT_EQ(0.0f, dist_I_l);
float dist_l_I =
master_trainer_->ShapeDistance(*shape_table_, shape_l, shape_I);
// BOTH ways.
EXPECT_EQ(0.0f, dist_l_I);
// l/1 on the other hand should be distinct.
float dist_l_1 =
master_trainer_->ShapeDistance(*shape_table_, shape_l, shape_1);
EXPECT_GT(dist_l_1, kMin1lDistance);
float dist_1_l =
master_trainer_->ShapeDistance(*shape_table_, shape_1, shape_l);
EXPECT_GT(dist_1_l, kMin1lDistance);
// So should I/1.
float dist_I_1 =
master_trainer_->ShapeDistance(*shape_table_, shape_I, shape_1);
EXPECT_GT(dist_I_1, kMin1lDistance);
float dist_1_I =
master_trainer_->ShapeDistance(*shape_table_, shape_1, shape_I);
EXPECT_GT(dist_1_I, kMin1lDistance);
}
// Objects declared here can be used by all tests in the test case for Foo.
ShapeTable* shape_table_;
MasterTrainer* master_trainer_;
};
// Tests that the MasterTrainer correctly loads its data and reaches the correct
// conclusion over the distance between Arial I l and 1.
TEST_F(MasterTrainerTest, Il1Test) {
// Initialize the master_trainer_ and load the Arial tr file.
LoadMasterTrainer();
VerifyIl1();
}
// Tests the ErrorCounter using a MockClassifier to check that it counts
// error categories correctly.
TEST_F(MasterTrainerTest, ErrorCounterTest) {
// Initialize the master_trainer_ from the saved tmp file.
LoadMasterTrainer();
// Add the space character to the shape_table_ if not already present to
// count junk.
if (shape_table_->FindShape(0, -1) < 0) shape_table_->AddShape(0, 0);
// Make a mock classifier.
tesseract::ShapeClassifier* shape_classifier =
new tesseract::MockClassifier(shape_table_);
// Get the accuracy report.
STRING accuracy_report;
master_trainer_->TestClassifierOnSamples(tesseract::CT_UNICHAR_TOP1_ERR, 0,
false, shape_classifier,
&accuracy_report);
LOG(INFO) << accuracy_report.string();
std::string result_string = accuracy_report.string();
std::vector<std::string> results =
absl::StrSplit(result_string, '\t', absl::SkipEmpty());
EXPECT_EQ(tesseract::CT_SIZE + 1, results.size());
int result_values[tesseract::CT_SIZE];
for (int i = 0; i < tesseract::CT_SIZE; ++i) {
EXPECT_TRUE(safe_strto32(results[i + 1], &result_values[i]));
}
// These tests are more-or-less immune to additions to the number of
// categories or changes in the training data.
int num_samples = master_trainer_->GetSamples()->num_raw_samples();
EXPECT_EQ(kNumCorrect, result_values[tesseract::CT_UNICHAR_TOP_OK]);
EXPECT_EQ(1, result_values[tesseract::CT_FONT_ATTR_ERR]);
EXPECT_EQ(kNumTopTopErrs, result_values[tesseract::CT_UNICHAR_TOPTOP_ERR]);
EXPECT_EQ(kNumTop1Errs, result_values[tesseract::CT_UNICHAR_TOP1_ERR]);
EXPECT_EQ(kNumTop2Errs, result_values[tesseract::CT_UNICHAR_TOP2_ERR]);
EXPECT_EQ(kNumTopNErrs, result_values[tesseract::CT_UNICHAR_TOPN_ERR]);
// Each of the TOPTOP errs also counts as a multi-unichar.
EXPECT_EQ(kNumTopTopErrs - kNumTop1Errs,
result_values[tesseract::CT_OK_MULTI_UNICHAR]);
EXPECT_EQ(num_samples - kNumNonReject, result_values[tesseract::CT_REJECT]);
EXPECT_EQ(kNumAnswers, result_values[tesseract::CT_NUM_RESULTS]);
delete shape_classifier;
}
} // namespace.