mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
903a4ffe9d
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@289 d0cd1f9f-072b-0410-8dd7-cf729c803f20
687 lines
22 KiB
C++
687 lines
22 KiB
C++
/**********************************************************************
|
|
* File: coutln.c (Formerly coutline.c)
|
|
* Description: Code for the C_OUTLINE class.
|
|
* Author: Ray Smith
|
|
* Created: Mon Oct 07 16:01:57 BST 1991
|
|
*
|
|
* (C) Copyright 1991, Hewlett-Packard Ltd.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include "mfcpch.h"
|
|
#include <string.h>
|
|
#ifdef __UNIX__
|
|
#include <assert.h>
|
|
#endif
|
|
#include "coutln.h"
|
|
|
|
ELISTIZE_S (C_OUTLINE)
|
|
ICOORD C_OUTLINE::step_coords[4] = {
|
|
ICOORD (-1, 0), ICOORD (0, -1), ICOORD (1, 0), ICOORD (0, 1)
|
|
};
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::C_OUTLINE
|
|
*
|
|
* Constructor to build a C_OUTLINE from a CRACKEDGE LOOP.
|
|
**********************************************************************/
|
|
|
|
C_OUTLINE::C_OUTLINE (
|
|
//constructor
|
|
CRACKEDGE * startpt, //outline to convert
|
|
ICOORD bot_left, //bounding box
|
|
ICOORD top_right, inT16 length //length of loop
|
|
):box (bot_left, top_right), start (startpt->pos) {
|
|
inT16 stepindex; //index to step
|
|
CRACKEDGE *edgept; //current point
|
|
|
|
stepcount = length; //no of steps
|
|
if (length == 0) {
|
|
steps = NULL;
|
|
return;
|
|
}
|
|
//get memory
|
|
steps = (uinT8 *) alloc_mem (step_mem());
|
|
memset(steps, 0, step_mem());
|
|
edgept = startpt;
|
|
|
|
for (stepindex = 0; stepindex < length; stepindex++) {
|
|
//set compact step
|
|
set_step (stepindex, edgept->stepdir);
|
|
edgept = edgept->next;
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::C_OUTLINE
|
|
*
|
|
* Constructor to build a C_OUTLINE from a C_OUTLINE_FRAG.
|
|
**********************************************************************/
|
|
C_OUTLINE::C_OUTLINE (
|
|
//constructor
|
|
//steps to copy
|
|
ICOORD startpt, DIR128 * new_steps,
|
|
inT16 length //length of loop
|
|
):start (startpt) {
|
|
inT8 dirdiff; //direction difference
|
|
DIR128 prevdir; //previous direction
|
|
DIR128 dir; //current direction
|
|
DIR128 lastdir; //dir of last step
|
|
TBOX new_box; //easy bounding
|
|
inT16 stepindex; //index to step
|
|
inT16 srcindex; //source steps
|
|
ICOORD pos; //current position
|
|
|
|
pos = startpt;
|
|
stepcount = length; //no of steps
|
|
//get memory
|
|
steps = (uinT8 *) alloc_mem (step_mem());
|
|
memset(steps, 0, step_mem());
|
|
|
|
lastdir = new_steps[length - 1];
|
|
prevdir = lastdir;
|
|
for (stepindex = 0, srcindex = 0; srcindex < length;
|
|
stepindex++, srcindex++) {
|
|
new_box = TBOX (pos, pos);
|
|
box += new_box;
|
|
//copy steps
|
|
dir = new_steps[srcindex];
|
|
set_step(stepindex, dir);
|
|
dirdiff = dir - prevdir;
|
|
pos += step (stepindex);
|
|
if ((dirdiff == 64 || dirdiff == -64) && stepindex > 0) {
|
|
stepindex -= 2; //cancel there-and-back
|
|
prevdir = stepindex >= 0 ? step_dir (stepindex) : lastdir;
|
|
}
|
|
else
|
|
prevdir = dir;
|
|
}
|
|
ASSERT_HOST (pos.x () == startpt.x () && pos.y () == startpt.y ());
|
|
do {
|
|
dirdiff = step_dir (stepindex - 1) - step_dir (0);
|
|
if (dirdiff == 64 || dirdiff == -64) {
|
|
start += step (0);
|
|
stepindex -= 2; //cancel there-and-back
|
|
for (int i = 0; i < stepindex; ++i)
|
|
set_step(i, step_dir(i + 1));
|
|
}
|
|
}
|
|
while (stepindex > 1 && (dirdiff == 64 || dirdiff == -64));
|
|
stepcount = stepindex;
|
|
ASSERT_HOST (stepcount >= 4);
|
|
}
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::C_OUTLINE
|
|
*
|
|
* Constructor to build a C_OUTLINE from a rotation of a C_OUTLINE.
|
|
**********************************************************************/
|
|
|
|
C_OUTLINE::C_OUTLINE( //constructor
|
|
C_OUTLINE *srcline, //outline to
|
|
FCOORD rotation //rotate
|
|
) {
|
|
TBOX new_box; //easy bounding
|
|
inT16 stepindex; //index to step
|
|
inT16 dirdiff; //direction change
|
|
ICOORD pos; //current position
|
|
ICOORD prevpos; //previous dest point
|
|
|
|
ICOORD destpos; //destination point
|
|
inT16 destindex; //index to step
|
|
DIR128 dir; //coded direction
|
|
uinT8 new_step;
|
|
|
|
stepcount = srcline->stepcount * 2;
|
|
if (stepcount == 0) {
|
|
steps = NULL;
|
|
box = srcline->box;
|
|
box.rotate(rotation);
|
|
return;
|
|
}
|
|
//get memory
|
|
steps = (uinT8 *) alloc_mem (step_mem());
|
|
memset(steps, 0, step_mem());
|
|
|
|
for (int iteration = 0; iteration < 2; ++iteration) {
|
|
DIR128 round1 = iteration == 0 ? 32 : 0;
|
|
DIR128 round2 = iteration != 0 ? 32 : 0;
|
|
pos = srcline->start;
|
|
prevpos = pos;
|
|
prevpos.rotate (rotation);
|
|
start = prevpos;
|
|
box = TBOX (start, start);
|
|
destindex = 0;
|
|
for (stepindex = 0; stepindex < srcline->stepcount; stepindex++) {
|
|
pos += srcline->step (stepindex);
|
|
destpos = pos;
|
|
destpos.rotate (rotation);
|
|
// printf("%i %i %i %i ", destpos.x(), destpos.y(), pos.x(), pos.y());
|
|
while (destpos.x () != prevpos.x () || destpos.y () != prevpos.y ()) {
|
|
dir = DIR128 (FCOORD (destpos - prevpos));
|
|
dir += 64; //turn to step style
|
|
new_step = dir.get_dir ();
|
|
// printf(" %i\n", new_step);
|
|
if (new_step & 31) {
|
|
set_step(destindex++, dir + round1);
|
|
prevpos += step(destindex - 1);
|
|
if (destindex < 2
|
|
|| ((dirdiff =
|
|
step_dir (destindex - 1) - step_dir (destindex - 2)) !=
|
|
-64 && dirdiff != 64)) {
|
|
set_step(destindex++, dir + round2);
|
|
prevpos += step(destindex - 1);
|
|
} else {
|
|
prevpos -= step(destindex - 1);
|
|
destindex--;
|
|
prevpos -= step(destindex - 1);
|
|
set_step(destindex - 1, dir + round2);
|
|
prevpos += step(destindex - 1);
|
|
}
|
|
}
|
|
else {
|
|
set_step(destindex++, dir);
|
|
prevpos += step(destindex - 1);
|
|
}
|
|
while (destindex >= 2 &&
|
|
((dirdiff =
|
|
step_dir (destindex - 1) - step_dir (destindex - 2)) == -64 ||
|
|
dirdiff == 64)) {
|
|
prevpos -= step(destindex - 1);
|
|
prevpos -= step(destindex - 2);
|
|
destindex -= 2; // Forget u turn
|
|
}
|
|
//ASSERT_HOST(prevpos.x() == destpos.x() && prevpos.y() == destpos.y());
|
|
new_box = TBOX (destpos, destpos);
|
|
box += new_box;
|
|
}
|
|
}
|
|
ASSERT_HOST (destpos.x () == start.x () && destpos.y () == start.y ());
|
|
dirdiff = step_dir (destindex - 1) - step_dir (0);
|
|
while ((dirdiff == 64 || dirdiff == -64) && destindex > 1) {
|
|
start += step (0);
|
|
destindex -= 2;
|
|
for (int i = 0; i < destindex; ++i)
|
|
set_step(i, step_dir(i + 1));
|
|
dirdiff = step_dir (destindex - 1) - step_dir (0);
|
|
}
|
|
if (destindex >= 4)
|
|
break;
|
|
}
|
|
ASSERT_HOST(destindex <= stepcount);
|
|
stepcount = destindex;
|
|
destpos = start;
|
|
for (stepindex = 0; stepindex < stepcount; stepindex++) {
|
|
destpos += step (stepindex);
|
|
}
|
|
ASSERT_HOST (destpos.x () == start.x () && destpos.y () == start.y ());
|
|
}
|
|
|
|
// Build a fake outline, given just a bounding box and append to the list.
|
|
void C_OUTLINE::FakeOutline(const TBOX& box, C_OUTLINE_LIST* outlines) {
|
|
C_OUTLINE_IT ol_it(outlines);
|
|
// Make a C_OUTLINE from the bounds. This is a bit of a hack,
|
|
// as there is no outline, just a bounding box, but it works nicely.
|
|
CRACKEDGE start;
|
|
start.pos = box.topleft();
|
|
C_OUTLINE* outline = new C_OUTLINE(&start, box.topleft(), box.botright(), 0);
|
|
ol_it.add_to_end(outline);
|
|
}
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::area
|
|
*
|
|
* Compute the area of the outline.
|
|
**********************************************************************/
|
|
|
|
inT32 C_OUTLINE::area() { //winding number
|
|
int stepindex; //current step
|
|
inT32 total_steps; //steps to do
|
|
inT32 total; //total area
|
|
ICOORD pos; //position of point
|
|
ICOORD next_step; //step to next pix
|
|
C_OUTLINE_IT it = child ();
|
|
|
|
pos = start_pos ();
|
|
total_steps = pathlength ();
|
|
total = 0;
|
|
for (stepindex = 0; stepindex < total_steps; stepindex++) {
|
|
//all intersected
|
|
next_step = step (stepindex);
|
|
if (next_step.x () < 0)
|
|
total += pos.y ();
|
|
else if (next_step.x () > 0)
|
|
total -= pos.y ();
|
|
pos += next_step;
|
|
}
|
|
for (it.mark_cycle_pt (); !it.cycled_list (); it.forward ())
|
|
total += it.data ()->area ();//add areas of children
|
|
|
|
return total;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::perimeter
|
|
*
|
|
* Compute the perimeter of the outline and its first level children.
|
|
**********************************************************************/
|
|
|
|
inT32 C_OUTLINE::perimeter() {
|
|
inT32 total_steps; // Return value.
|
|
C_OUTLINE_IT it = child();
|
|
|
|
total_steps = pathlength();
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward())
|
|
total_steps += it.data()->pathlength(); // Add perimeters of children.
|
|
|
|
return total_steps;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::outer_area
|
|
*
|
|
* Compute the area of the outline.
|
|
**********************************************************************/
|
|
|
|
inT32 C_OUTLINE::outer_area() { //winding number
|
|
int stepindex; //current step
|
|
inT32 total_steps; //steps to do
|
|
inT32 total; //total area
|
|
ICOORD pos; //position of point
|
|
ICOORD next_step; //step to next pix
|
|
|
|
pos = start_pos ();
|
|
total_steps = pathlength ();
|
|
if (total_steps == 0)
|
|
return box.area();
|
|
total = 0;
|
|
for (stepindex = 0; stepindex < total_steps; stepindex++) {
|
|
//all intersected
|
|
next_step = step (stepindex);
|
|
if (next_step.x () < 0)
|
|
total += pos.y ();
|
|
else if (next_step.x () > 0)
|
|
total -= pos.y ();
|
|
pos += next_step;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::count_transitions
|
|
*
|
|
* Compute the number of x and y maxes and mins in the outline.
|
|
**********************************************************************/
|
|
|
|
inT32 C_OUTLINE::count_transitions( //winding number
|
|
inT32 threshold //on size
|
|
) {
|
|
BOOL8 first_was_max_x; //what was first
|
|
BOOL8 first_was_max_y;
|
|
BOOL8 looking_for_max_x; //what is next
|
|
BOOL8 looking_for_min_x;
|
|
BOOL8 looking_for_max_y; //what is next
|
|
BOOL8 looking_for_min_y;
|
|
int stepindex; //current step
|
|
inT32 total_steps; //steps to do
|
|
//current limits
|
|
inT32 max_x, min_x, max_y, min_y;
|
|
inT32 initial_x, initial_y; //initial limits
|
|
inT32 total; //total changes
|
|
ICOORD pos; //position of point
|
|
ICOORD next_step; //step to next pix
|
|
|
|
pos = start_pos ();
|
|
total_steps = pathlength ();
|
|
total = 0;
|
|
max_x = min_x = pos.x ();
|
|
max_y = min_y = pos.y ();
|
|
looking_for_max_x = TRUE;
|
|
looking_for_min_x = TRUE;
|
|
looking_for_max_y = TRUE;
|
|
looking_for_min_y = TRUE;
|
|
first_was_max_x = FALSE;
|
|
first_was_max_y = FALSE;
|
|
initial_x = pos.x ();
|
|
initial_y = pos.y (); //stop uninit warning
|
|
for (stepindex = 0; stepindex < total_steps; stepindex++) {
|
|
//all intersected
|
|
next_step = step (stepindex);
|
|
pos += next_step;
|
|
if (next_step.x () < 0) {
|
|
if (looking_for_max_x && pos.x () < min_x)
|
|
min_x = pos.x ();
|
|
if (looking_for_min_x && max_x - pos.x () > threshold) {
|
|
if (looking_for_max_x) {
|
|
initial_x = max_x;
|
|
first_was_max_x = FALSE;
|
|
}
|
|
total++;
|
|
looking_for_max_x = TRUE;
|
|
looking_for_min_x = FALSE;
|
|
min_x = pos.x (); //reset min
|
|
}
|
|
}
|
|
else if (next_step.x () > 0) {
|
|
if (looking_for_min_x && pos.x () > max_x)
|
|
max_x = pos.x ();
|
|
if (looking_for_max_x && pos.x () - min_x > threshold) {
|
|
if (looking_for_min_x) {
|
|
initial_x = min_x; //remember first min
|
|
first_was_max_x = TRUE;
|
|
}
|
|
total++;
|
|
looking_for_max_x = FALSE;
|
|
looking_for_min_x = TRUE;
|
|
max_x = pos.x ();
|
|
}
|
|
}
|
|
else if (next_step.y () < 0) {
|
|
if (looking_for_max_y && pos.y () < min_y)
|
|
min_y = pos.y ();
|
|
if (looking_for_min_y && max_y - pos.y () > threshold) {
|
|
if (looking_for_max_y) {
|
|
initial_y = max_y; //remember first max
|
|
first_was_max_y = FALSE;
|
|
}
|
|
total++;
|
|
looking_for_max_y = TRUE;
|
|
looking_for_min_y = FALSE;
|
|
min_y = pos.y (); //reset min
|
|
}
|
|
}
|
|
else {
|
|
if (looking_for_min_y && pos.y () > max_y)
|
|
max_y = pos.y ();
|
|
if (looking_for_max_y && pos.y () - min_y > threshold) {
|
|
if (looking_for_min_y) {
|
|
initial_y = min_y; //remember first min
|
|
first_was_max_y = TRUE;
|
|
}
|
|
total++;
|
|
looking_for_max_y = FALSE;
|
|
looking_for_min_y = TRUE;
|
|
max_y = pos.y ();
|
|
}
|
|
}
|
|
|
|
}
|
|
if (first_was_max_x && looking_for_min_x) {
|
|
if (max_x - initial_x > threshold)
|
|
total++;
|
|
else
|
|
total--;
|
|
}
|
|
else if (!first_was_max_x && looking_for_max_x) {
|
|
if (initial_x - min_x > threshold)
|
|
total++;
|
|
else
|
|
total--;
|
|
}
|
|
if (first_was_max_y && looking_for_min_y) {
|
|
if (max_y - initial_y > threshold)
|
|
total++;
|
|
else
|
|
total--;
|
|
}
|
|
else if (!first_was_max_y && looking_for_max_y) {
|
|
if (initial_y - min_y > threshold)
|
|
total++;
|
|
else
|
|
total--;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::operator<
|
|
*
|
|
* Return TRUE if the left operand is inside the right one.
|
|
**********************************************************************/
|
|
|
|
BOOL8
|
|
C_OUTLINE::operator< ( //winding number
|
|
const C_OUTLINE & other //other outline
|
|
) const
|
|
{
|
|
inT16 count = 0; //winding count
|
|
ICOORD pos; //position of point
|
|
inT32 stepindex; //index to cstep
|
|
|
|
if (!box.overlap (other.box))
|
|
return FALSE; //can't be contained
|
|
if (stepcount == 0)
|
|
return other.box.contains(this->box);
|
|
|
|
pos = start;
|
|
for (stepindex = 0; stepindex < stepcount
|
|
&& (count = other.winding_number (pos)) == INTERSECTING; stepindex++)
|
|
pos += step (stepindex); //try all points
|
|
if (count == INTERSECTING) {
|
|
//all intersected
|
|
pos = other.start;
|
|
for (stepindex = 0; stepindex < other.stepcount
|
|
&& (count = winding_number (pos)) == INTERSECTING; stepindex++)
|
|
//try other way round
|
|
pos += other.step (stepindex);
|
|
return count == INTERSECTING || count == 0;
|
|
}
|
|
return count != 0;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::winding_number
|
|
*
|
|
* Return the winding number of the outline around the given point.
|
|
**********************************************************************/
|
|
|
|
inT16 C_OUTLINE::winding_number( //winding number
|
|
ICOORD point //point to wind around
|
|
) const {
|
|
inT16 stepindex; //index to cstep
|
|
inT16 count; //winding count
|
|
ICOORD vec; //to current point
|
|
ICOORD stepvec; //step vector
|
|
inT32 cross; //cross product
|
|
|
|
vec = start - point; //vector to it
|
|
count = 0;
|
|
for (stepindex = 0; stepindex < stepcount; stepindex++) {
|
|
stepvec = step (stepindex); //get the step
|
|
//crossing the line
|
|
if (vec.y () <= 0 && vec.y () + stepvec.y () > 0) {
|
|
cross = vec * stepvec; //cross product
|
|
if (cross > 0)
|
|
count++; //crossing right half
|
|
else if (cross == 0)
|
|
return INTERSECTING; //going through point
|
|
}
|
|
else if (vec.y () > 0 && vec.y () + stepvec.y () <= 0) {
|
|
cross = vec * stepvec;
|
|
if (cross < 0)
|
|
count--; //crossing back
|
|
else if (cross == 0)
|
|
return INTERSECTING; //illegal
|
|
}
|
|
vec += stepvec; //sum vectors
|
|
}
|
|
return count; //winding number
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::turn_direction
|
|
*
|
|
* Return the sum direction delta of the outline.
|
|
**********************************************************************/
|
|
|
|
inT16 C_OUTLINE::turn_direction() const { //winding number
|
|
DIR128 prevdir; //previous direction
|
|
DIR128 dir; //current direction
|
|
inT16 stepindex; //index to cstep
|
|
inT8 dirdiff; //direction difference
|
|
inT16 count; //winding count
|
|
|
|
if (stepcount == 0)
|
|
return 128;
|
|
count = 0;
|
|
prevdir = step_dir (stepcount - 1);
|
|
for (stepindex = 0; stepindex < stepcount; stepindex++) {
|
|
dir = step_dir (stepindex);
|
|
dirdiff = dir - prevdir;
|
|
ASSERT_HOST (dirdiff == 0 || dirdiff == 32 || dirdiff == -32);
|
|
count += dirdiff;
|
|
prevdir = dir;
|
|
}
|
|
ASSERT_HOST (count == 128 || count == -128);
|
|
return count; //winding number
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::reverse
|
|
*
|
|
* Reverse the direction of an outline.
|
|
**********************************************************************/
|
|
|
|
void C_OUTLINE::reverse() { //reverse drection
|
|
DIR128 halfturn = MODULUS / 2; //amount to shift
|
|
DIR128 stepdir; //direction of step
|
|
inT16 stepindex; //index to cstep
|
|
inT16 farindex; //index to other side
|
|
inT16 halfsteps; //half of stepcount
|
|
|
|
halfsteps = (stepcount + 1) / 2;
|
|
for (stepindex = 0; stepindex < halfsteps; stepindex++) {
|
|
farindex = stepcount - stepindex - 1;
|
|
stepdir = step_dir (stepindex);
|
|
set_step (stepindex, step_dir (farindex) + halfturn);
|
|
set_step (farindex, stepdir + halfturn);
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::move
|
|
*
|
|
* Move C_OUTLINE by vector
|
|
**********************************************************************/
|
|
|
|
void C_OUTLINE::move( // reposition OUTLINE
|
|
const ICOORD vec // by vector
|
|
) {
|
|
C_OUTLINE_IT it(&children); // iterator
|
|
|
|
box.move (vec);
|
|
start += vec;
|
|
|
|
for (it.mark_cycle_pt (); !it.cycled_list (); it.forward ())
|
|
it.data ()->move (vec); // move child outlines
|
|
}
|
|
|
|
// If this outline is smaller than the given min_size, delete this and
|
|
// remove from its list, via *it, after checking that *it points to this.
|
|
// Otherwise, if any children of this are too small, delete them.
|
|
// On entry, *it must be an iterator pointing to this. If this gets deleted
|
|
// then this is extracted from *it, so an iteration can continue.
|
|
void C_OUTLINE::RemoveSmallRecursive(int min_size, C_OUTLINE_IT* it) {
|
|
if (box.width() < min_size || box.height() < min_size) {
|
|
ASSERT_HOST(this == it->data());
|
|
delete it->extract(); // Too small so get rid of it and any children.
|
|
} else if (!children.empty()) {
|
|
// Search the children of this, deleting any that are too small.
|
|
C_OUTLINE_IT child_it(&children);
|
|
for (child_it.mark_cycle_pt(); !child_it.cycled_list();
|
|
child_it.forward()) {
|
|
C_OUTLINE* child = child_it.data();
|
|
child->RemoveSmallRecursive(min_size, &child_it);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::plot
|
|
*
|
|
* Draw the outline in the given colour.
|
|
**********************************************************************/
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
void C_OUTLINE::plot( //draw it
|
|
ScrollView* window, //window to draw in
|
|
ScrollView::Color colour //colour to draw in
|
|
) const {
|
|
inT16 stepindex; //index to cstep
|
|
ICOORD pos; //current position
|
|
DIR128 stepdir; //direction of step
|
|
DIR128 oldstepdir; //previous stepdir
|
|
|
|
pos = start; //current position
|
|
window->Pen(colour);
|
|
if (stepcount == 0) {
|
|
window->Rectangle(box.left(), box.top(), box.right(), box.bottom());
|
|
return;
|
|
}
|
|
window->SetCursor(pos.x(), pos.y());
|
|
|
|
stepindex = 0;
|
|
stepdir = step_dir (0); //get direction
|
|
while (stepindex < stepcount) {
|
|
do {
|
|
pos += step (stepindex); //step to next
|
|
stepindex++; //count steps
|
|
oldstepdir = stepdir;
|
|
//new direction
|
|
stepdir = step_dir (stepindex);
|
|
}
|
|
while (stepindex < stepcount
|
|
&& oldstepdir.get_dir () == stepdir.get_dir ());
|
|
//merge straight lines
|
|
window->DrawTo(pos.x(), pos.y());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/**********************************************************************
|
|
* C_OUTLINE::operator=
|
|
*
|
|
* Assignment - deep copy data
|
|
**********************************************************************/
|
|
|
|
//assignment
|
|
C_OUTLINE & C_OUTLINE::operator= (
|
|
const C_OUTLINE & source //from this
|
|
) {
|
|
box = source.box;
|
|
start = source.start;
|
|
if (steps != NULL)
|
|
free_mem(steps);
|
|
stepcount = source.stepcount;
|
|
steps = (uinT8 *) alloc_mem (step_mem());
|
|
memmove (steps, source.steps, step_mem());
|
|
if (!children.empty ())
|
|
children.clear ();
|
|
children.deep_copy(&source.children, &deep_copy);
|
|
return *this;
|
|
}
|
|
|
|
ICOORD C_OUTLINE::chain_step(int chaindir) {
|
|
return step_coords[chaindir % 4];
|
|
}
|