tesseract/cube/conv_net_classifier.cpp

371 lines
11 KiB
C++

/**********************************************************************
* File: charclassifier.cpp
* Description: Implementation of Convolutional-NeuralNet Character Classifier
* Author: Ahmad Abdulkader
* Created: 2007
*
* (C) Copyright 2008, Google Inc.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include <wctype.h>
#include "char_set.h"
#include "classifier_base.h"
#include "const.h"
#include "conv_net_classifier.h"
#include "cube_utils.h"
#include "feature_base.h"
#include "feature_bmp.h"
#include "tess_lang_model.h"
namespace tesseract {
ConvNetCharClassifier::ConvNetCharClassifier(CharSet *char_set,
TuningParams *params,
FeatureBase *feat_extract)
: CharClassifier(char_set, params, feat_extract) {
char_net_ = NULL;
net_input_ = NULL;
net_output_ = NULL;
}
ConvNetCharClassifier::~ConvNetCharClassifier() {
if (char_net_ != NULL) {
delete char_net_;
char_net_ = NULL;
}
if (net_input_ != NULL) {
delete []net_input_;
net_input_ = NULL;
}
if (net_output_ != NULL) {
delete []net_output_;
net_output_ = NULL;
}
}
// The main training function. Given a sample and a class ID the classifier
// updates its parameters according to its learning algorithm. This function
// is currently not implemented. TODO(ahmadab): implement end-2-end training
bool ConvNetCharClassifier::Train(CharSamp *char_samp, int ClassID) {
return false;
}
// A secondary function needed for training. Allows the trainer to set the
// value of any train-time paramter. This function is currently not
// implemented. TODO(ahmadab): implement end-2-end training
bool ConvNetCharClassifier::SetLearnParam(char *var_name, float val) {
// TODO(ahmadab): implementation of parameter initializing.
return false;
}
// Folds the output of the NeuralNet using the loaded folding sets
void ConvNetCharClassifier::Fold() {
// in case insensitive mode
if (case_sensitive_ == false) {
int class_cnt = char_set_->ClassCount();
// fold case
for (int class_id = 0; class_id < class_cnt; class_id++) {
// get class string
const char_32 *str32 = char_set_->ClassString(class_id);
// get the upper case form of the string
string_32 upper_form32 = str32;
for (int ch = 0; ch < upper_form32.length(); ch++) {
if (iswalpha(static_cast<int>(upper_form32[ch])) != 0) {
upper_form32[ch] = towupper(upper_form32[ch]);
}
}
// find out the upperform class-id if any
int upper_class_id =
char_set_->ClassID(reinterpret_cast<const char_32 *>(
upper_form32.c_str()));
if (upper_class_id != -1 && class_id != upper_class_id) {
float max_out = MAX(net_output_[class_id], net_output_[upper_class_id]);
net_output_[class_id] = max_out;
net_output_[upper_class_id] = max_out;
}
}
}
// The folding sets specify how groups of classes should be folded
// Folding involved assigning a min-activation to all the members
// of the folding set. The min-activation is a fraction of the max-activation
// of the members of the folding set
for (int fold_set = 0; fold_set < fold_set_cnt_; fold_set++) {
if (fold_set_len_[fold_set] == 0)
continue;
float max_prob = net_output_[fold_sets_[fold_set][0]];
for (int ch = 1; ch < fold_set_len_[fold_set]; ch++) {
if (net_output_[fold_sets_[fold_set][ch]] > max_prob) {
max_prob = net_output_[fold_sets_[fold_set][ch]];
}
}
for (int ch = 0; ch < fold_set_len_[fold_set]; ch++) {
net_output_[fold_sets_[fold_set][ch]] = MAX(max_prob * kFoldingRatio,
net_output_[fold_sets_[fold_set][ch]]);
}
}
}
// Compute the features of specified charsamp and feedforward the
// specified nets
bool ConvNetCharClassifier::RunNets(CharSamp *char_samp) {
if (char_net_ == NULL) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
"NeuralNet is NULL\n");
return false;
}
int feat_cnt = char_net_->in_cnt();
int class_cnt = char_set_->ClassCount();
// allocate i/p and o/p buffers if needed
if (net_input_ == NULL) {
net_input_ = new float[feat_cnt];
if (net_input_ == NULL) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
"unable to allocate memory for input nodes\n");
return false;
}
net_output_ = new float[class_cnt];
if (net_output_ == NULL) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
"unable to allocate memory for output nodes\n");
return false;
}
}
// compute input features
if (feat_extract_->ComputeFeatures(char_samp, net_input_) == false) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
"unable to compute features\n");
return false;
}
if (char_net_ != NULL) {
if (char_net_->FeedForward(net_input_, net_output_) == false) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
"unable to run feed-forward\n");
return false;
}
} else {
return false;
}
Fold();
return true;
}
// return the cost of being a char
int ConvNetCharClassifier::CharCost(CharSamp *char_samp) {
if (RunNets(char_samp) == false) {
return 0;
}
return CubeUtils::Prob2Cost(1.0f - net_output_[0]);
}
// classifies a charsamp and returns an alternate list
// of chars sorted by char costs
CharAltList *ConvNetCharClassifier::Classify(CharSamp *char_samp) {
// run the needed nets
if (RunNets(char_samp) == false) {
return NULL;
}
int class_cnt = char_set_->ClassCount();
// create an altlist
CharAltList *alt_list = new CharAltList(char_set_, class_cnt);
if (alt_list == NULL) {
fprintf(stderr, "Cube WARNING (ConvNetCharClassifier::Classify): "
"returning emtpy CharAltList\n");
return NULL;
}
for (int out = 1; out < class_cnt; out++) {
int cost = CubeUtils::Prob2Cost(net_output_[out]);
alt_list->Insert(out, cost);
}
return alt_list;
}
// Set an external net (for training purposes)
void ConvNetCharClassifier::SetNet(tesseract::NeuralNet *char_net) {
if (char_net_ != NULL) {
delete char_net_;
char_net_ = NULL;
}
char_net_ = char_net;
}
// This function will return true if the file does not exist.
// But will fail if the it did not pass the sanity checks
bool ConvNetCharClassifier::LoadFoldingSets(const string &data_file_path,
const string &lang,
LangModel *lang_mod) {
fold_set_cnt_ = 0;
string fold_file_name;
fold_file_name = data_file_path + lang;
fold_file_name += ".cube.fold";
// folding sets are optional
FILE *fp = fopen(fold_file_name.c_str(), "r");
if (fp == NULL) {
return true;
}
fclose(fp);
string fold_sets_str;
if (!CubeUtils::ReadFileToString(fold_file_name.c_str(),
&fold_sets_str)) {
return false;
}
// split into lines
vector<string> str_vec;
CubeUtils::SplitStringUsing(fold_sets_str, "\r\n", &str_vec);
fold_set_cnt_ = str_vec.size();
fold_sets_ = new int *[fold_set_cnt_];
if (fold_sets_ == NULL) {
return false;
}
fold_set_len_ = new int[fold_set_cnt_];
if (fold_set_len_ == NULL) {
fold_set_cnt_ = 0;
return false;
}
for (int fold_set = 0; fold_set < fold_set_cnt_; fold_set++) {
reinterpret_cast<TessLangModel *>(lang_mod)->RemoveInvalidCharacters(
&str_vec[fold_set]);
// if all or all but one character are invalid, invalidate this set
if (str_vec[fold_set].length() <= 1) {
fprintf(stderr, "Cube WARNING (ConvNetCharClassifier::LoadFoldingSets): "
"invalidating folding set %d\n", fold_set);
fold_set_len_[fold_set] = 0;
fold_sets_[fold_set] = NULL;
continue;
}
string_32 str32;
CubeUtils::UTF8ToUTF32(str_vec[fold_set].c_str(), &str32);
fold_set_len_[fold_set] = str32.length();
fold_sets_[fold_set] = new int[fold_set_len_[fold_set]];
if (fold_sets_[fold_set] == NULL) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::LoadFoldingSets): "
"could not allocate folding set\n");
fold_set_cnt_ = fold_set;
return false;
}
for (int ch = 0; ch < fold_set_len_[fold_set]; ch++) {
fold_sets_[fold_set][ch] = char_set_->ClassID(str32[ch]);
}
}
return true;
}
// Init the classifier provided a data-path and a language string
bool ConvNetCharClassifier::Init(const string &data_file_path,
const string &lang,
LangModel *lang_mod) {
if (init_) {
return true;
}
// load the nets if any. This function will return true if the net file
// does not exist. But will fail if the net did not pass the sanity checks
if (!LoadNets(data_file_path, lang)) {
return false;
}
// load the folding sets if any. This function will return true if the
// file does not exist. But will fail if the it did not pass the sanity checks
if (!LoadFoldingSets(data_file_path, lang, lang_mod)) {
return false;
}
init_ = true;
return true;
}
// Load the classifier's Neural Nets
// This function will return true if the net file does not exist.
// But will fail if the net did not pass the sanity checks
bool ConvNetCharClassifier::LoadNets(const string &data_file_path,
const string &lang) {
string char_net_file;
// add the lang identifier
char_net_file = data_file_path + lang;
char_net_file += ".cube.nn";
// neural network is optional
FILE *fp = fopen(char_net_file.c_str(), "r");
if (fp == NULL) {
return true;
}
fclose(fp);
// load main net
char_net_ = tesseract::NeuralNet::FromFile(char_net_file.c_str());
if (char_net_ == NULL) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::LoadNets): "
"could not load %s\n", char_net_file.c_str());
return false;
}
// validate net
if (char_net_->in_cnt()!= feat_extract_->FeatureCnt()) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::LoadNets): "
"could not validate net %s\n", char_net_file.c_str());
return false;
}
// alloc net i/o buffers
int feat_cnt = char_net_->in_cnt();
int class_cnt = char_set_->ClassCount();
if (char_net_->out_cnt() != class_cnt) {
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::LoadNets): "
"output count (%d) and class count (%d) are not equal\n",
char_net_->out_cnt(), class_cnt);
return false;
}
// allocate i/p and o/p buffers if needed
if (net_input_ == NULL) {
net_input_ = new float[feat_cnt];
if (net_input_ == NULL) {
return false;
}
net_output_ = new float[class_cnt];
if (net_output_ == NULL) {
return false;
}
}
return true;
}
} // tesseract