mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-28 13:49:35 +08:00
189 lines
7.1 KiB
C++
189 lines
7.1 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: series.cpp
|
|
// Description: Runs networks in series on the same input.
|
|
// Author: Ray Smith
|
|
// Created: Thu May 02 08:26:06 PST 2013
|
|
//
|
|
// (C) Copyright 2013, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "series.h"
|
|
|
|
#include "fullyconnected.h"
|
|
#include "networkscratch.h"
|
|
#include "scrollview.h"
|
|
#include "tprintf.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// ni_ and no_ will be set by AddToStack.
|
|
Series::Series(const STRING& name) : Plumbing(name) {
|
|
type_ = NT_SERIES;
|
|
}
|
|
|
|
Series::~Series() {
|
|
}
|
|
|
|
// Returns the shape output from the network given an input shape (which may
|
|
// be partially unknown ie zero).
|
|
StaticShape Series::OutputShape(const StaticShape& input_shape) const {
|
|
StaticShape result(input_shape);
|
|
int stack_size = stack_.size();
|
|
for (int i = 0; i < stack_size; ++i) {
|
|
result = stack_[i]->OutputShape(result);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Sets up the network for training. Initializes weights using weights of
|
|
// scale `range` picked according to the random number generator `randomizer`.
|
|
// Note that series has its own implementation just for debug purposes.
|
|
int Series::InitWeights(float range, TRand* randomizer) {
|
|
num_weights_ = 0;
|
|
tprintf("Num outputs,weights in serial:\n");
|
|
for (int i = 0; i < stack_.size(); ++i) {
|
|
int weights = stack_[i]->InitWeights(range, randomizer);
|
|
tprintf(" %s:%d, %d\n",
|
|
stack_[i]->spec().string(), stack_[i]->NumOutputs(), weights);
|
|
num_weights_ += weights;
|
|
}
|
|
tprintf("Total weights = %d\n", num_weights_);
|
|
return num_weights_;
|
|
}
|
|
|
|
// Sets needs_to_backprop_ to needs_backprop and returns true if
|
|
// needs_backprop || any weights in this network so the next layer forward
|
|
// can be told to produce backprop for this layer if needed.
|
|
bool Series::SetupNeedsBackprop(bool needs_backprop) {
|
|
needs_to_backprop_ = needs_backprop;
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
needs_backprop = stack_[i]->SetupNeedsBackprop(needs_backprop);
|
|
return needs_backprop;
|
|
}
|
|
|
|
// Returns an integer reduction factor that the network applies to the
|
|
// time sequence. Assumes that any 2-d is already eliminated. Used for
|
|
// scaling bounding boxes of truth data.
|
|
// WARNING: if GlobalMinimax is used to vary the scale, this will return
|
|
// the last used scale factor. Call it before any forward, and it will return
|
|
// the minimum scale factor of the paths through the GlobalMinimax.
|
|
int Series::XScaleFactor() const {
|
|
int factor = 1;
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
factor *= stack_[i]->XScaleFactor();
|
|
return factor;
|
|
}
|
|
|
|
// Provides the (minimum) x scale factor to the network (of interest only to
|
|
// input units) so they can determine how to scale bounding boxes.
|
|
void Series::CacheXScaleFactor(int factor) {
|
|
stack_[0]->CacheXScaleFactor(factor);
|
|
}
|
|
|
|
// Runs forward propagation of activations on the input line.
|
|
// See NetworkCpp for a detailed discussion of the arguments.
|
|
void Series::Forward(bool debug, const NetworkIO& input,
|
|
const TransposedArray* input_transpose,
|
|
NetworkScratch* scratch, NetworkIO* output) {
|
|
int stack_size = stack_.size();
|
|
ASSERT_HOST(stack_size > 1);
|
|
// Revolving intermediate buffers.
|
|
NetworkScratch::IO buffer1(input, scratch);
|
|
NetworkScratch::IO buffer2(input, scratch);
|
|
// Run each network in turn, giving the output of n as the input to n + 1,
|
|
// with the final network providing the real output.
|
|
stack_[0]->Forward(debug, input, input_transpose, scratch, buffer1);
|
|
for (int i = 1; i < stack_size; i += 2) {
|
|
stack_[i]->Forward(debug, *buffer1, NULL, scratch,
|
|
i + 1 < stack_size ? buffer2 : output);
|
|
if (i + 1 == stack_size) return;
|
|
stack_[i + 1]->Forward(debug, *buffer2, NULL, scratch,
|
|
i + 2 < stack_size ? buffer1 : output);
|
|
}
|
|
}
|
|
|
|
// Runs backward propagation of errors on the deltas line.
|
|
// See NetworkCpp for a detailed discussion of the arguments.
|
|
bool Series::Backward(bool debug, const NetworkIO& fwd_deltas,
|
|
NetworkScratch* scratch,
|
|
NetworkIO* back_deltas) {
|
|
if (!IsTraining()) return false;
|
|
int stack_size = stack_.size();
|
|
ASSERT_HOST(stack_size > 1);
|
|
// Revolving intermediate buffers.
|
|
NetworkScratch::IO buffer1(fwd_deltas, scratch);
|
|
NetworkScratch::IO buffer2(fwd_deltas, scratch);
|
|
// Run each network in reverse order, giving the back_deltas output of n as
|
|
// the fwd_deltas input to n-1, with the 0 network providing the real output.
|
|
if (!stack_.back()->IsTraining() ||
|
|
!stack_.back()->Backward(debug, fwd_deltas, scratch, buffer1))
|
|
return false;
|
|
for (int i = stack_size - 2; i >= 0; i -= 2) {
|
|
if (!stack_[i]->IsTraining() ||
|
|
!stack_[i]->Backward(debug, *buffer1, scratch,
|
|
i > 0 ? buffer2 : back_deltas))
|
|
return false;
|
|
if (i == 0) return needs_to_backprop_;
|
|
if (!stack_[i - 1]->IsTraining() ||
|
|
!stack_[i - 1]->Backward(debug, *buffer2, scratch,
|
|
i > 1 ? buffer1 : back_deltas))
|
|
return false;
|
|
}
|
|
return needs_to_backprop_;
|
|
}
|
|
|
|
// Splits the series after the given index, returning the two parts and
|
|
// deletes itself. The first part, up to network with index last_start, goes
|
|
// into start, and the rest goes into end.
|
|
void Series::SplitAt(int last_start, Series** start, Series** end) {
|
|
*start = NULL;
|
|
*end = NULL;
|
|
if (last_start < 0 || last_start >= stack_.size()) {
|
|
tprintf("Invalid split index %d must be in range [0,%d]!\n",
|
|
last_start, stack_.size() - 1);
|
|
return;
|
|
}
|
|
Series* master_series = new Series("MasterSeries");
|
|
Series* boosted_series = new Series("BoostedSeries");
|
|
for (int s = 0; s <= last_start; ++s) {
|
|
if (s + 1 == stack_.size() && stack_[s]->type() == NT_SOFTMAX) {
|
|
// Change the softmax to a tanh.
|
|
FullyConnected* fc = reinterpret_cast<FullyConnected*>(stack_[s]);
|
|
fc->ChangeType(NT_TANH);
|
|
}
|
|
master_series->AddToStack(stack_[s]);
|
|
stack_[s] = NULL;
|
|
}
|
|
for (int s = last_start + 1; s < stack_.size(); ++s) {
|
|
boosted_series->AddToStack(stack_[s]);
|
|
stack_[s] = NULL;
|
|
}
|
|
*start = master_series;
|
|
*end = boosted_series;
|
|
delete this;
|
|
}
|
|
|
|
// Appends the elements of the src series to this, removing from src and
|
|
// deleting it.
|
|
void Series::AppendSeries(Network* src) {
|
|
ASSERT_HOST(src->type() == NT_SERIES);
|
|
Series* src_series = reinterpret_cast<Series*>(src);
|
|
for (int s = 0; s < src_series->stack_.size(); ++s) {
|
|
AddToStack(src_series->stack_[s]);
|
|
src_series->stack_[s] = NULL;
|
|
}
|
|
delete src;
|
|
}
|
|
|
|
|
|
} // namespace tesseract.
|