mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-11 13:47:48 +08:00
b148644c1b
Signed-off-by: Stefan Weil <sw@weilnetz.de>
107 lines
4.0 KiB
Python
Executable File
107 lines
4.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# (C) Copyright 2014, Google Inc.
|
|
# (C) Copyright 2018, James R Barlow
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# This script provides an easy way to execute various phases of training
|
|
# Tesseract. For a detailed description of the phases, see
|
|
# https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract
|
|
#
|
|
import sys, os, logging
|
|
|
|
|
|
sys.path.insert(0, os.path.dirname(__file__))
|
|
from tesstrain_utils import (
|
|
parse_flags,
|
|
initialize_fontconfig,
|
|
phase_I_generate_image,
|
|
phase_UP_generate_unicharset,
|
|
phase_E_extract_features,
|
|
make_lstmdata,
|
|
cleanup,
|
|
)
|
|
import language_specific
|
|
|
|
log = logging.getLogger()
|
|
|
|
|
|
def setup_logging_console():
|
|
log.setLevel(logging.DEBUG)
|
|
console = logging.StreamHandler()
|
|
console.setLevel(logging.INFO)
|
|
console_formatter = logging.Formatter(
|
|
"[%(asctime)s] %(levelname)s - %(message)s", datefmt="%H:%M:%S"
|
|
)
|
|
console.setFormatter(console_formatter)
|
|
log.addHandler(console)
|
|
|
|
|
|
def setup_logging_logfile(logfile):
|
|
logfile = logging.FileHandler(logfile)
|
|
logfile.setLevel(logging.DEBUG)
|
|
logfile_formatter = logging.Formatter(
|
|
"[%(asctime)s] - %(levelname)s - %(name)s - %(message)s"
|
|
)
|
|
logfile.setFormatter(logfile_formatter)
|
|
log.addHandler(logfile)
|
|
|
|
|
|
def main():
|
|
setup_logging_console()
|
|
ctx = parse_flags()
|
|
setup_logging_logfile(ctx.log_file)
|
|
if not ctx.linedata:
|
|
log.error("--linedata_only is required since only LSTM is supported")
|
|
sys.exit(1)
|
|
|
|
log.info(f"=== Starting training for language {ctx.lang_code}")
|
|
ctx = language_specific.set_lang_specific_parameters(ctx, ctx.lang_code)
|
|
|
|
initialize_fontconfig(ctx)
|
|
phase_I_generate_image(ctx, par_factor=8)
|
|
phase_UP_generate_unicharset(ctx)
|
|
|
|
if ctx.linedata:
|
|
phase_E_extract_features(ctx, ["--psm", "6", "lstm.train"], "lstmf")
|
|
make_lstmdata(ctx)
|
|
|
|
cleanup(ctx)
|
|
log.info("All done!")
|
|
return 0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|
|
# _rc0 = subprocess.call(["tlog","\n=== Starting training for language '"+str(LANG_CODE.val)+"'"],shell=True)
|
|
# _rc0 = subprocess.call(["source",os.popen("dirname "+__file__).read().rstrip("\n")+"/language-specific.sh"],shell=True)
|
|
# _rc0 = subprocess.call(["set_lang_specific_parameters",str(LANG_CODE.val)],shell=True)
|
|
# _rc0 = subprocess.call(["initialize_fontconfig"],shell=True)
|
|
# _rc0 = subprocess.call(["phase_I_generate_image","8"],shell=True)
|
|
# _rc0 = subprocess.call(["phase_UP_generate_unicharset"],shell=True)
|
|
# if (LINEDATA ):
|
|
# subprocess.call(["phase_E_extract_features"," --psm 6 lstm.train ","8","lstmf"],shell=True)
|
|
# subprocess.call(["make__lstmdata"],shell=True)
|
|
# subprocess.call(["tlog","\nCreated starter traineddata for language '"+str(LANG_CODE.val)+"'\n"],shell=True)
|
|
# subprocess.call(["tlog","\nRun lstmtraining to do the LSTM training for language '"+str(LANG_CODE.val)+"'\n"],shell=True)
|
|
# else:
|
|
# subprocess.call(["phase_D_generate_dawg"],shell=True)
|
|
# subprocess.call(["phase_E_extract_features","box.train","8","tr"],shell=True)
|
|
# subprocess.call(["phase_C_cluster_prototypes",str(TRAINING_DIR.val)+"/"+str(LANG_CODE.val)+".normproto"],shell=True)
|
|
# if (str(ENABLE_SHAPE_CLUSTERING.val) == "y" ):
|
|
# subprocess.call(["phase_S_cluster_shapes"],shell=True)
|
|
# subprocess.call(["phase_M_cluster_microfeatures"],shell=True)
|
|
# subprocess.call(["phase_B_generate_ambiguities"],shell=True)
|
|
# subprocess.call(["make__traineddata"],shell=True)
|
|
# subprocess.call(["tlog","\nCompleted training for language '"+str(LANG_CODE.val)+"'\n"],shell=True)
|