mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-23 06:57:50 +08:00
524a61452d
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen closes #14 Commits:6317305
doxygen9f42f69
doxygen0fc4d52
doxygen37b4b55
fix typobded8f1
some more doxy020eb00
slight tweak524666d
doxygenify2a36a3e
doxygenify229d218
doxygenify7fd28ae
doxygenifya8c64bc
doxygenifyf5d21b6
fix5d8ede8
doxygenifya58a4e0
language_model.cppfa85709
lm_pain_points.cpp lm_state.cpp6418da3
merge06190ba
Merge branch 'old_doxygen_merge' into more-doxygen84acf08
Merge branch 'master' into more-doxygen50fe1ff
pagewalk.cpp cube_reco_context.cpp2982583
change to relative192a24a
applybox.cpp, take one8eeb053
delete docs for obsolete params52e4c77
modernise classify/ocrfeatures.cpp2a1cba6
modernise cutil/emalloc.cpp773e006
silence doxygen warningaeb1731
silence doxygen warningf18387f
silence doxygen; new params are unused?15ad6bd
doxygenify cutil/efio.cppc8b5dad
doxygenify cutil/danerror.cpp784450f
the globals and exceptions parts are obsolete; remove8bca324
doxygen classify/normfeat.cpp9bcbe16
doxygen classify/normmatch.cppaa9a971
doxygen ccmain/cube_control.cppc083ff2
doxygen ccmain/cube_reco_context.cppf842850
params changed5c94f12
doxygen ccmain/cubeclassifier.cpp15ba750
case sensitivef5c71d4
case sensitivef85655b
doxygen classify/intproto.cpp4bbc7aa
partial doxygen classify/mfx.cppdbb6041
partial doxygen classify/intproto.cpp2aa72db
finish doxygen classify/intproto.cpp0b8de99
doxygen training/mftraining.cpp0b5b35c
partial doxygen ccstruct/coutln.cppb81c766
partial doxygen ccstruct/coutln.cpp40fc415
finished? doxygen ccstruct/coutln.cpp6e4165c
doxygen classify/clusttool.cpp0267dec
doxygen classify/cutoffs.cpp7f0c70c
doxygen classify/fpoint.cpp512f3bd
ignore ~ files5668a52
doxygen classify/intmatcher.cpp84788d4
doxygen classify/kdtree.cpp29f36ca
doxygen classify/mfoutline.cpp40b94b1
silence doxygen warnings6c511b9
doxygen classify/mfx.cppf9b4080
doxygen classify/outfeat.cppaa1df05
doxygen classify/picofeat.cppcc5f466
doxygen training/cntraining.cppcce044f
doxygen training/commontraining.cpp167e216
missing param9498383
renamed params37eeac2
renamed paramd87b5dd
casec8ee174
renamed paramsb858db8
typo4c2a838
h2 context?81a2c0c
fix some param names; add some missing params, no docsbcf8a4c
add some missing params, no docsaf77f86
add some missing params, no docs; fix some param names01df24e
fix some params6161056
fix some params68508b6
fix some params285aeb6
doxygen complains here no matter what529bcfa
rm some missing params, typoscd21226
rm some missing params, add some new ones48a4bc2
fix paramsc844628
missing param312ce37
missing param; rename oneec2fdec
missing param05e15e0
missing paramsd515858
change "<" to < to make doxygen happyb476a28
wrong place
1480 lines
62 KiB
C++
1480 lines
62 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: language_model.cpp
|
|
// Description: Functions that utilize the knowledge about the properties,
|
|
// structure and statistics of the language to help recognition.
|
|
// Author: Daria Antonova
|
|
// Created: Mon Nov 11 11:26:43 PST 2009
|
|
//
|
|
// (C) Copyright 2009, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include <math.h>
|
|
|
|
#include "language_model.h"
|
|
|
|
#include "dawg.h"
|
|
#include "freelist.h"
|
|
#include "intproto.h"
|
|
#include "helpers.h"
|
|
#include "lm_state.h"
|
|
#include "lm_pain_points.h"
|
|
#include "matrix.h"
|
|
#include "params.h"
|
|
#include "params_training_featdef.h"
|
|
|
|
#if defined(_MSC_VER) || defined(ANDROID)
|
|
double log2(double n) {
|
|
return log(n) / log(2.0);
|
|
}
|
|
#endif // _MSC_VER
|
|
|
|
namespace tesseract {
|
|
|
|
const float LanguageModel::kMaxAvgNgramCost = 25.0f;
|
|
|
|
LanguageModel::LanguageModel(const UnicityTable<FontInfo> *fontinfo_table,
|
|
Dict *dict)
|
|
: INT_MEMBER(language_model_debug_level, 0, "Language model debug level",
|
|
dict->getCCUtil()->params()),
|
|
BOOL_INIT_MEMBER(language_model_ngram_on, false,
|
|
"Turn on/off the use of character ngram model",
|
|
dict->getCCUtil()->params()),
|
|
INT_MEMBER(language_model_ngram_order, 8,
|
|
"Maximum order of the character ngram model",
|
|
dict->getCCUtil()->params()),
|
|
INT_MEMBER(language_model_viterbi_list_max_num_prunable, 10,
|
|
"Maximum number of prunable (those for which"
|
|
" PrunablePath() is true) entries in each viterbi list"
|
|
" recorded in BLOB_CHOICEs",
|
|
dict->getCCUtil()->params()),
|
|
INT_MEMBER(language_model_viterbi_list_max_size, 500,
|
|
"Maximum size of viterbi lists recorded in BLOB_CHOICEs",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_ngram_small_prob, 0.000001,
|
|
"To avoid overly small denominators use this as the "
|
|
"floor of the probability returned by the ngram model.",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_ngram_nonmatch_score, -40.0,
|
|
"Average classifier score of a non-matching unichar.",
|
|
dict->getCCUtil()->params()),
|
|
BOOL_MEMBER(language_model_ngram_use_only_first_uft8_step, false,
|
|
"Use only the first UTF8 step of the given string"
|
|
" when computing log probabilities.",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_ngram_scale_factor, 0.03,
|
|
"Strength of the character ngram model relative to the"
|
|
" character classifier ",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_ngram_rating_factor, 16.0,
|
|
"Factor to bring log-probs into the same range as ratings"
|
|
" when multiplied by outline length ",
|
|
dict->getCCUtil()->params()),
|
|
BOOL_MEMBER(language_model_ngram_space_delimited_language, true,
|
|
"Words are delimited by space",
|
|
dict->getCCUtil()->params()),
|
|
INT_MEMBER(language_model_min_compound_length, 3,
|
|
"Minimum length of compound words",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_penalty_non_freq_dict_word, 0.1,
|
|
"Penalty for words not in the frequent word dictionary",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_penalty_non_dict_word, 0.15,
|
|
"Penalty for non-dictionary words",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_penalty_punc, 0.2,
|
|
"Penalty for inconsistent punctuation",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_penalty_case, 0.1,
|
|
"Penalty for inconsistent case",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_penalty_script, 0.5,
|
|
"Penalty for inconsistent script",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_penalty_chartype, 0.3,
|
|
"Penalty for inconsistent character type",
|
|
dict->getCCUtil()->params()),
|
|
// TODO(daria, rays): enable font consistency checking
|
|
// after improving font analysis.
|
|
double_MEMBER(language_model_penalty_font, 0.00,
|
|
"Penalty for inconsistent font",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_penalty_spacing, 0.05,
|
|
"Penalty for inconsistent spacing",
|
|
dict->getCCUtil()->params()),
|
|
double_MEMBER(language_model_penalty_increment, 0.01,
|
|
"Penalty increment",
|
|
dict->getCCUtil()->params()),
|
|
INT_MEMBER(wordrec_display_segmentations, 0, "Display Segmentations",
|
|
dict->getCCUtil()->params()),
|
|
BOOL_INIT_MEMBER(language_model_use_sigmoidal_certainty, false,
|
|
"Use sigmoidal score for certainty",
|
|
dict->getCCUtil()->params()),
|
|
fontinfo_table_(fontinfo_table), dict_(dict),
|
|
fixed_pitch_(false), max_char_wh_ratio_(0.0),
|
|
acceptable_choice_found_(false) {
|
|
ASSERT_HOST(dict_ != NULL);
|
|
dawg_args_ = new DawgArgs(NULL, new DawgPositionVector(), NO_PERM);
|
|
very_beginning_active_dawgs_ = new DawgPositionVector();
|
|
beginning_active_dawgs_ = new DawgPositionVector();
|
|
}
|
|
|
|
LanguageModel::~LanguageModel() {
|
|
delete very_beginning_active_dawgs_;
|
|
delete beginning_active_dawgs_;
|
|
delete dawg_args_->updated_dawgs;
|
|
delete dawg_args_;
|
|
}
|
|
|
|
void LanguageModel::InitForWord(const WERD_CHOICE *prev_word,
|
|
bool fixed_pitch, float max_char_wh_ratio,
|
|
float rating_cert_scale) {
|
|
fixed_pitch_ = fixed_pitch;
|
|
max_char_wh_ratio_ = max_char_wh_ratio;
|
|
rating_cert_scale_ = rating_cert_scale;
|
|
acceptable_choice_found_ = false;
|
|
correct_segmentation_explored_ = false;
|
|
|
|
// Initialize vectors with beginning DawgInfos.
|
|
very_beginning_active_dawgs_->clear();
|
|
dict_->init_active_dawgs(very_beginning_active_dawgs_, false);
|
|
beginning_active_dawgs_->clear();
|
|
dict_->default_dawgs(beginning_active_dawgs_, false);
|
|
|
|
// Fill prev_word_str_ with the last language_model_ngram_order
|
|
// unichars from prev_word.
|
|
if (language_model_ngram_on) {
|
|
if (prev_word != NULL && prev_word->unichar_string() != NULL) {
|
|
prev_word_str_ = prev_word->unichar_string();
|
|
if (language_model_ngram_space_delimited_language) prev_word_str_ += ' ';
|
|
} else {
|
|
prev_word_str_ = " ";
|
|
}
|
|
const char *str_ptr = prev_word_str_.string();
|
|
const char *str_end = str_ptr + prev_word_str_.length();
|
|
int step;
|
|
prev_word_unichar_step_len_ = 0;
|
|
while (str_ptr != str_end && (step = UNICHAR::utf8_step(str_ptr))) {
|
|
str_ptr += step;
|
|
++prev_word_unichar_step_len_;
|
|
}
|
|
ASSERT_HOST(str_ptr == str_end);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper scans the collection of predecessors for competing siblings that
|
|
* have the same letter with the opposite case, setting competing_vse.
|
|
*/
|
|
static void ScanParentsForCaseMix(const UNICHARSET& unicharset,
|
|
LanguageModelState* parent_node) {
|
|
if (parent_node == NULL) return;
|
|
ViterbiStateEntry_IT vit(&parent_node->viterbi_state_entries);
|
|
for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) {
|
|
ViterbiStateEntry* vse = vit.data();
|
|
vse->competing_vse = NULL;
|
|
UNICHAR_ID unichar_id = vse->curr_b->unichar_id();
|
|
if (unicharset.get_isupper(unichar_id) ||
|
|
unicharset.get_islower(unichar_id)) {
|
|
UNICHAR_ID other_case = unicharset.get_other_case(unichar_id);
|
|
if (other_case == unichar_id) continue; // Not in unicharset.
|
|
// Find other case in same list. There could be multiple entries with
|
|
// the same unichar_id, but in theory, they should all point to the
|
|
// same BLOB_CHOICE, and that is what we will be using to decide
|
|
// which to keep.
|
|
ViterbiStateEntry_IT vit2(&parent_node->viterbi_state_entries);
|
|
for (vit2.mark_cycle_pt(); !vit2.cycled_list() &&
|
|
vit2.data()->curr_b->unichar_id() != other_case;
|
|
vit2.forward()) {}
|
|
if (!vit2.cycled_list()) {
|
|
vse->competing_vse = vit2.data();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper returns true if the given choice has a better case variant before
|
|
* it in the choice_list that is not distinguishable by size.
|
|
*/
|
|
static bool HasBetterCaseVariant(const UNICHARSET& unicharset,
|
|
const BLOB_CHOICE* choice,
|
|
BLOB_CHOICE_LIST* choices) {
|
|
UNICHAR_ID choice_id = choice->unichar_id();
|
|
UNICHAR_ID other_case = unicharset.get_other_case(choice_id);
|
|
if (other_case == choice_id || other_case == INVALID_UNICHAR_ID)
|
|
return false; // Not upper or lower or not in unicharset.
|
|
if (unicharset.SizesDistinct(choice_id, other_case))
|
|
return false; // Can be separated by size.
|
|
BLOB_CHOICE_IT bc_it(choices);
|
|
for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) {
|
|
BLOB_CHOICE* better_choice = bc_it.data();
|
|
if (better_choice->unichar_id() == other_case)
|
|
return true; // Found an earlier instance of other_case.
|
|
else if (better_choice == choice)
|
|
return false; // Reached the original choice.
|
|
}
|
|
return false; // Should never happen, but just in case.
|
|
}
|
|
|
|
/**
|
|
* UpdateState has the job of combining the ViterbiStateEntry lists on each
|
|
* of the choices on parent_list with each of the blob choices in curr_list,
|
|
* making a new ViterbiStateEntry for each sensible path.
|
|
*
|
|
* This could be a huge set of combinations, creating a lot of work only to
|
|
* be truncated by some beam limit, but only certain kinds of paths will
|
|
* continue at the next step:
|
|
* - paths that are liked by the language model: either a DAWG or the n-gram
|
|
* model, where active.
|
|
* - paths that represent some kind of top choice. The old permuter permuted
|
|
* the top raw classifier score, the top upper case word and the top lower-
|
|
* case word. UpdateState now concentrates its top-choice paths on top
|
|
* lower-case, top upper-case (or caseless alpha), and top digit sequence,
|
|
* with allowance for continuation of these paths through blobs where such
|
|
* a character does not appear in the choices list.
|
|
*
|
|
* GetNextParentVSE enforces some of these models to minimize the number of
|
|
* calls to AddViterbiStateEntry, even prior to looking at the language model.
|
|
* Thus an n-blob sequence of [l1I] will produce 3n calls to
|
|
* AddViterbiStateEntry instead of 3^n.
|
|
*
|
|
* Of course it isn't quite that simple as Title Case is handled by allowing
|
|
* lower case to continue an upper case initial, but it has to be detected
|
|
* in the combiner so it knows which upper case letters are initial alphas.
|
|
*/
|
|
bool LanguageModel::UpdateState(
|
|
bool just_classified,
|
|
int curr_col, int curr_row,
|
|
BLOB_CHOICE_LIST *curr_list,
|
|
LanguageModelState *parent_node,
|
|
LMPainPoints *pain_points,
|
|
WERD_RES *word_res,
|
|
BestChoiceBundle *best_choice_bundle,
|
|
BlamerBundle *blamer_bundle) {
|
|
if (language_model_debug_level > 0) {
|
|
tprintf("\nUpdateState: col=%d row=%d %s",
|
|
curr_col, curr_row, just_classified ? "just_classified" : "");
|
|
if (language_model_debug_level > 5)
|
|
tprintf("(parent=%p)\n", parent_node);
|
|
else
|
|
tprintf("\n");
|
|
}
|
|
// Initialize helper variables.
|
|
bool word_end = (curr_row+1 >= word_res->ratings->dimension());
|
|
bool new_changed = false;
|
|
float denom = (language_model_ngram_on) ? ComputeDenom(curr_list) : 1.0f;
|
|
const UNICHARSET& unicharset = dict_->getUnicharset();
|
|
BLOB_CHOICE *first_lower = NULL;
|
|
BLOB_CHOICE *first_upper = NULL;
|
|
BLOB_CHOICE *first_digit = NULL;
|
|
bool has_alnum_mix = false;
|
|
if (parent_node != NULL) {
|
|
int result = SetTopParentLowerUpperDigit(parent_node);
|
|
if (result < 0) {
|
|
if (language_model_debug_level > 0)
|
|
tprintf("No parents found to process\n");
|
|
return false;
|
|
}
|
|
if (result > 0)
|
|
has_alnum_mix = true;
|
|
}
|
|
if (!GetTopLowerUpperDigit(curr_list, &first_lower, &first_upper,
|
|
&first_digit))
|
|
has_alnum_mix = false;;
|
|
ScanParentsForCaseMix(unicharset, parent_node);
|
|
if (language_model_debug_level > 3 && parent_node != NULL) {
|
|
parent_node->Print("Parent viterbi list");
|
|
}
|
|
LanguageModelState *curr_state = best_choice_bundle->beam[curr_row];
|
|
|
|
// Call AddViterbiStateEntry() for each parent+child ViterbiStateEntry.
|
|
ViterbiStateEntry_IT vit;
|
|
BLOB_CHOICE_IT c_it(curr_list);
|
|
for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
|
|
BLOB_CHOICE* choice = c_it.data();
|
|
// TODO(antonova): make sure commenting this out if ok for ngram
|
|
// model scoring (I think this was introduced to fix ngram model quirks).
|
|
// Skip NULL unichars unless it is the only choice.
|
|
//if (!curr_list->singleton() && c_it.data()->unichar_id() == 0) continue;
|
|
UNICHAR_ID unichar_id = choice->unichar_id();
|
|
if (unicharset.get_fragment(unichar_id)) {
|
|
continue; // Skip fragments.
|
|
}
|
|
// Set top choice flags.
|
|
LanguageModelFlagsType blob_choice_flags = kXhtConsistentFlag;
|
|
if (c_it.at_first() || !new_changed)
|
|
blob_choice_flags |= kSmallestRatingFlag;
|
|
if (first_lower == choice) blob_choice_flags |= kLowerCaseFlag;
|
|
if (first_upper == choice) blob_choice_flags |= kUpperCaseFlag;
|
|
if (first_digit == choice) blob_choice_flags |= kDigitFlag;
|
|
|
|
if (parent_node == NULL) {
|
|
// Process the beginning of a word.
|
|
// If there is a better case variant that is not distinguished by size,
|
|
// skip this blob choice, as we have no choice but to accept the result
|
|
// of the character classifier to distinguish between them, even if
|
|
// followed by an upper case.
|
|
// With words like iPoc, and other CamelBackWords, the lower-upper
|
|
// transition can only be achieved if the classifier has the correct case
|
|
// as the top choice, and leaving an initial I lower down the list
|
|
// increases the chances of choosing IPoc simply because it doesn't
|
|
// include such a transition. iPoc will beat iPOC and ipoc because
|
|
// the other words are baseline/x-height inconsistent.
|
|
if (HasBetterCaseVariant(unicharset, choice, curr_list))
|
|
continue;
|
|
// Upper counts as lower at the beginning of a word.
|
|
if (blob_choice_flags & kUpperCaseFlag)
|
|
blob_choice_flags |= kLowerCaseFlag;
|
|
new_changed |= AddViterbiStateEntry(
|
|
blob_choice_flags, denom, word_end, curr_col, curr_row,
|
|
choice, curr_state, NULL, pain_points,
|
|
word_res, best_choice_bundle, blamer_bundle);
|
|
} else {
|
|
// Get viterbi entries from each parent ViterbiStateEntry.
|
|
vit.set_to_list(&parent_node->viterbi_state_entries);
|
|
int vit_counter = 0;
|
|
vit.mark_cycle_pt();
|
|
ViterbiStateEntry* parent_vse = NULL;
|
|
LanguageModelFlagsType top_choice_flags;
|
|
while ((parent_vse = GetNextParentVSE(just_classified, has_alnum_mix,
|
|
c_it.data(), blob_choice_flags,
|
|
unicharset, word_res, &vit,
|
|
&top_choice_flags)) != NULL) {
|
|
// Skip pruned entries and do not look at prunable entries if already
|
|
// examined language_model_viterbi_list_max_num_prunable of those.
|
|
if (PrunablePath(*parent_vse) &&
|
|
(++vit_counter > language_model_viterbi_list_max_num_prunable ||
|
|
(language_model_ngram_on && parent_vse->ngram_info->pruned))) {
|
|
continue;
|
|
}
|
|
// If the parent has no alnum choice, (ie choice is the first in a
|
|
// string of alnum), and there is a better case variant that is not
|
|
// distinguished by size, skip this blob choice/parent, as with the
|
|
// initial blob treatment above.
|
|
if (!parent_vse->HasAlnumChoice(unicharset) &&
|
|
HasBetterCaseVariant(unicharset, choice, curr_list))
|
|
continue;
|
|
// Create a new ViterbiStateEntry if BLOB_CHOICE in c_it.data()
|
|
// looks good according to the Dawgs or character ngram model.
|
|
new_changed |= AddViterbiStateEntry(
|
|
top_choice_flags, denom, word_end, curr_col, curr_row,
|
|
c_it.data(), curr_state, parent_vse, pain_points,
|
|
word_res, best_choice_bundle, blamer_bundle);
|
|
}
|
|
}
|
|
}
|
|
return new_changed;
|
|
}
|
|
|
|
/**
|
|
* Finds the first lower and upper case letter and first digit in curr_list.
|
|
* For non-upper/lower languages, alpha counts as upper.
|
|
* Uses the first character in the list in place of empty results.
|
|
* Returns true if both alpha and digits are found.
|
|
*/
|
|
bool LanguageModel::GetTopLowerUpperDigit(BLOB_CHOICE_LIST *curr_list,
|
|
BLOB_CHOICE **first_lower,
|
|
BLOB_CHOICE **first_upper,
|
|
BLOB_CHOICE **first_digit) const {
|
|
BLOB_CHOICE_IT c_it(curr_list);
|
|
const UNICHARSET &unicharset = dict_->getUnicharset();
|
|
BLOB_CHOICE *first_unichar = NULL;
|
|
for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
|
|
UNICHAR_ID unichar_id = c_it.data()->unichar_id();
|
|
if (unicharset.get_fragment(unichar_id)) continue; // skip fragments
|
|
if (first_unichar == NULL) first_unichar = c_it.data();
|
|
if (*first_lower == NULL && unicharset.get_islower(unichar_id)) {
|
|
*first_lower = c_it.data();
|
|
}
|
|
if (*first_upper == NULL && unicharset.get_isalpha(unichar_id) &&
|
|
!unicharset.get_islower(unichar_id)) {
|
|
*first_upper = c_it.data();
|
|
}
|
|
if (*first_digit == NULL && unicharset.get_isdigit(unichar_id)) {
|
|
*first_digit = c_it.data();
|
|
}
|
|
}
|
|
ASSERT_HOST(first_unichar != NULL);
|
|
bool mixed = (*first_lower != NULL || *first_upper != NULL) &&
|
|
*first_digit != NULL;
|
|
if (*first_lower == NULL) *first_lower = first_unichar;
|
|
if (*first_upper == NULL) *first_upper = first_unichar;
|
|
if (*first_digit == NULL) *first_digit = first_unichar;
|
|
return mixed;
|
|
}
|
|
|
|
/**
|
|
* Forces there to be at least one entry in the overall set of the
|
|
* viterbi_state_entries of each element of parent_node that has the
|
|
* top_choice_flag set for lower, upper and digit using the same rules as
|
|
* GetTopLowerUpperDigit, setting the flag on the first found suitable
|
|
* candidate, whether or not the flag is set on some other parent.
|
|
* Returns 1 if both alpha and digits are found among the parents, -1 if no
|
|
* parents are found at all (a legitimate case), and 0 otherwise.
|
|
*/
|
|
int LanguageModel::SetTopParentLowerUpperDigit(
|
|
LanguageModelState *parent_node) const {
|
|
if (parent_node == NULL) return -1;
|
|
UNICHAR_ID top_id = INVALID_UNICHAR_ID;
|
|
ViterbiStateEntry* top_lower = NULL;
|
|
ViterbiStateEntry* top_upper = NULL;
|
|
ViterbiStateEntry* top_digit = NULL;
|
|
ViterbiStateEntry* top_choice = NULL;
|
|
float lower_rating = 0.0f;
|
|
float upper_rating = 0.0f;
|
|
float digit_rating = 0.0f;
|
|
float top_rating = 0.0f;
|
|
const UNICHARSET &unicharset = dict_->getUnicharset();
|
|
ViterbiStateEntry_IT vit(&parent_node->viterbi_state_entries);
|
|
for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) {
|
|
ViterbiStateEntry* vse = vit.data();
|
|
// INVALID_UNICHAR_ID should be treated like a zero-width joiner, so scan
|
|
// back to the real character if needed.
|
|
ViterbiStateEntry* unichar_vse = vse;
|
|
UNICHAR_ID unichar_id = unichar_vse->curr_b->unichar_id();
|
|
float rating = unichar_vse->curr_b->rating();
|
|
while (unichar_id == INVALID_UNICHAR_ID &&
|
|
unichar_vse->parent_vse != NULL) {
|
|
unichar_vse = unichar_vse->parent_vse;
|
|
unichar_id = unichar_vse->curr_b->unichar_id();
|
|
rating = unichar_vse->curr_b->rating();
|
|
}
|
|
if (unichar_id != INVALID_UNICHAR_ID) {
|
|
if (unicharset.get_islower(unichar_id)) {
|
|
if (top_lower == NULL || lower_rating > rating) {
|
|
top_lower = vse;
|
|
lower_rating = rating;
|
|
}
|
|
} else if (unicharset.get_isalpha(unichar_id)) {
|
|
if (top_upper == NULL || upper_rating > rating) {
|
|
top_upper = vse;
|
|
upper_rating = rating;
|
|
}
|
|
} else if (unicharset.get_isdigit(unichar_id)) {
|
|
if (top_digit == NULL || digit_rating > rating) {
|
|
top_digit = vse;
|
|
digit_rating = rating;
|
|
}
|
|
}
|
|
}
|
|
if (top_choice == NULL || top_rating > rating) {
|
|
top_choice = vse;
|
|
top_rating = rating;
|
|
top_id = unichar_id;
|
|
}
|
|
}
|
|
if (top_choice == NULL) return -1;
|
|
bool mixed = (top_lower != NULL || top_upper != NULL) &&
|
|
top_digit != NULL;
|
|
if (top_lower == NULL) top_lower = top_choice;
|
|
top_lower->top_choice_flags |= kLowerCaseFlag;
|
|
if (top_upper == NULL) top_upper = top_choice;
|
|
top_upper->top_choice_flags |= kUpperCaseFlag;
|
|
if (top_digit == NULL) top_digit = top_choice;
|
|
top_digit->top_choice_flags |= kDigitFlag;
|
|
top_choice->top_choice_flags |= kSmallestRatingFlag;
|
|
if (top_id != INVALID_UNICHAR_ID && dict_->compound_marker(top_id) &&
|
|
(top_choice->top_choice_flags &
|
|
(kLowerCaseFlag | kUpperCaseFlag | kDigitFlag))) {
|
|
// If the compound marker top choice carries any of the top alnum flags,
|
|
// then give it all of them, allowing words like I-295 to be chosen.
|
|
top_choice->top_choice_flags |=
|
|
kLowerCaseFlag | kUpperCaseFlag | kDigitFlag;
|
|
}
|
|
return mixed ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* Finds the next ViterbiStateEntry with which the given unichar_id can
|
|
* combine sensibly, taking into account any mixed alnum/mixed case
|
|
* situation, and whether this combination has been inspected before.
|
|
*/
|
|
ViterbiStateEntry* LanguageModel::GetNextParentVSE(
|
|
bool just_classified, bool mixed_alnum, const BLOB_CHOICE* bc,
|
|
LanguageModelFlagsType blob_choice_flags, const UNICHARSET& unicharset,
|
|
WERD_RES* word_res, ViterbiStateEntry_IT* vse_it,
|
|
LanguageModelFlagsType* top_choice_flags) const {
|
|
for (; !vse_it->cycled_list(); vse_it->forward()) {
|
|
ViterbiStateEntry* parent_vse = vse_it->data();
|
|
// Only consider the parent if it has been updated or
|
|
// if the current ratings cell has just been classified.
|
|
if (!just_classified && !parent_vse->updated) continue;
|
|
if (language_model_debug_level > 2)
|
|
parent_vse->Print("Considering");
|
|
// If the parent is non-alnum, then upper counts as lower.
|
|
*top_choice_flags = blob_choice_flags;
|
|
if ((blob_choice_flags & kUpperCaseFlag) &&
|
|
!parent_vse->HasAlnumChoice(unicharset)) {
|
|
*top_choice_flags |= kLowerCaseFlag;
|
|
}
|
|
*top_choice_flags &= parent_vse->top_choice_flags;
|
|
UNICHAR_ID unichar_id = bc->unichar_id();
|
|
const BLOB_CHOICE* parent_b = parent_vse->curr_b;
|
|
UNICHAR_ID parent_id = parent_b->unichar_id();
|
|
// Digits do not bind to alphas if there is a mix in both parent and current
|
|
// or if the alpha is not the top choice.
|
|
if (unicharset.get_isdigit(unichar_id) &&
|
|
unicharset.get_isalpha(parent_id) &&
|
|
(mixed_alnum || *top_choice_flags == 0))
|
|
continue; // Digits don't bind to alphas.
|
|
// Likewise alphas do not bind to digits if there is a mix in both or if
|
|
// the digit is not the top choice.
|
|
if (unicharset.get_isalpha(unichar_id) &&
|
|
unicharset.get_isdigit(parent_id) &&
|
|
(mixed_alnum || *top_choice_flags == 0))
|
|
continue; // Alphas don't bind to digits.
|
|
// If there is a case mix of the same alpha in the parent list, then
|
|
// competing_vse is non-null and will be used to determine whether
|
|
// or not to bind the current blob choice.
|
|
if (parent_vse->competing_vse != NULL) {
|
|
const BLOB_CHOICE* competing_b = parent_vse->competing_vse->curr_b;
|
|
UNICHAR_ID other_id = competing_b->unichar_id();
|
|
if (language_model_debug_level >= 5) {
|
|
tprintf("Parent %s has competition %s\n",
|
|
unicharset.id_to_unichar(parent_id),
|
|
unicharset.id_to_unichar(other_id));
|
|
}
|
|
if (unicharset.SizesDistinct(parent_id, other_id)) {
|
|
// If other_id matches bc wrt position and size, and parent_id, doesn't,
|
|
// don't bind to the current parent.
|
|
if (bc->PosAndSizeAgree(*competing_b, word_res->x_height,
|
|
language_model_debug_level >= 5) &&
|
|
!bc->PosAndSizeAgree(*parent_b, word_res->x_height,
|
|
language_model_debug_level >= 5))
|
|
continue; // Competing blobchoice has a better vertical match.
|
|
}
|
|
}
|
|
vse_it->forward();
|
|
return parent_vse; // This one is good!
|
|
}
|
|
return NULL; // Ran out of possibilities.
|
|
}
|
|
|
|
bool LanguageModel::AddViterbiStateEntry(
|
|
LanguageModelFlagsType top_choice_flags,
|
|
float denom,
|
|
bool word_end,
|
|
int curr_col, int curr_row,
|
|
BLOB_CHOICE *b,
|
|
LanguageModelState *curr_state,
|
|
ViterbiStateEntry *parent_vse,
|
|
LMPainPoints *pain_points,
|
|
WERD_RES *word_res,
|
|
BestChoiceBundle *best_choice_bundle,
|
|
BlamerBundle *blamer_bundle) {
|
|
ViterbiStateEntry_IT vit;
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("AddViterbiStateEntry for unichar %s rating=%.4f"
|
|
" certainty=%.4f top_choice_flags=0x%x",
|
|
dict_->getUnicharset().id_to_unichar(b->unichar_id()),
|
|
b->rating(), b->certainty(), top_choice_flags);
|
|
if (language_model_debug_level > 5)
|
|
tprintf(" parent_vse=%p\n", parent_vse);
|
|
else
|
|
tprintf("\n");
|
|
}
|
|
// Check whether the list is full.
|
|
if (curr_state != NULL &&
|
|
curr_state->viterbi_state_entries_length >=
|
|
language_model_viterbi_list_max_size) {
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("AddViterbiStateEntry: viterbi list is full!\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Invoke Dawg language model component.
|
|
LanguageModelDawgInfo *dawg_info =
|
|
GenerateDawgInfo(word_end, curr_col, curr_row, *b, parent_vse);
|
|
|
|
float outline_length =
|
|
AssociateUtils::ComputeOutlineLength(rating_cert_scale_, *b);
|
|
// Invoke Ngram language model component.
|
|
LanguageModelNgramInfo *ngram_info = NULL;
|
|
if (language_model_ngram_on) {
|
|
ngram_info = GenerateNgramInfo(
|
|
dict_->getUnicharset().id_to_unichar(b->unichar_id()), b->certainty(),
|
|
denom, curr_col, curr_row, outline_length, parent_vse);
|
|
ASSERT_HOST(ngram_info != NULL);
|
|
}
|
|
bool liked_by_language_model = dawg_info != NULL ||
|
|
(ngram_info != NULL && !ngram_info->pruned);
|
|
// Quick escape if not liked by the language model, can't be consistent
|
|
// xheight, and not top choice.
|
|
if (!liked_by_language_model && top_choice_flags == 0) {
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("Language model components very early pruned this entry\n");
|
|
}
|
|
delete ngram_info;
|
|
delete dawg_info;
|
|
return false;
|
|
}
|
|
|
|
// Check consistency of the path and set the relevant consistency_info.
|
|
LMConsistencyInfo consistency_info(
|
|
parent_vse != NULL ? &parent_vse->consistency_info : NULL);
|
|
// Start with just the x-height consistency, as it provides significant
|
|
// pruning opportunity.
|
|
consistency_info.ComputeXheightConsistency(
|
|
b, dict_->getUnicharset().get_ispunctuation(b->unichar_id()));
|
|
// Turn off xheight consistent flag if not consistent.
|
|
if (consistency_info.InconsistentXHeight()) {
|
|
top_choice_flags &= ~kXhtConsistentFlag;
|
|
}
|
|
|
|
// Quick escape if not liked by the language model, not consistent xheight,
|
|
// and not top choice.
|
|
if (!liked_by_language_model && top_choice_flags == 0) {
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("Language model components early pruned this entry\n");
|
|
}
|
|
delete ngram_info;
|
|
delete dawg_info;
|
|
return false;
|
|
}
|
|
|
|
// Compute the rest of the consistency info.
|
|
FillConsistencyInfo(curr_col, word_end, b, parent_vse,
|
|
word_res, &consistency_info);
|
|
if (dawg_info != NULL && consistency_info.invalid_punc) {
|
|
consistency_info.invalid_punc = false; // do not penalize dict words
|
|
}
|
|
|
|
// Compute cost of associating the blobs that represent the current unichar.
|
|
AssociateStats associate_stats;
|
|
ComputeAssociateStats(curr_col, curr_row, max_char_wh_ratio_,
|
|
parent_vse, word_res, &associate_stats);
|
|
if (parent_vse != NULL) {
|
|
associate_stats.shape_cost += parent_vse->associate_stats.shape_cost;
|
|
associate_stats.bad_shape |= parent_vse->associate_stats.bad_shape;
|
|
}
|
|
|
|
// Create the new ViterbiStateEntry compute the adjusted cost of the path.
|
|
ViterbiStateEntry *new_vse = new ViterbiStateEntry(
|
|
parent_vse, b, 0.0, outline_length,
|
|
consistency_info, associate_stats, top_choice_flags, dawg_info,
|
|
ngram_info, (language_model_debug_level > 0) ?
|
|
dict_->getUnicharset().id_to_unichar(b->unichar_id()) : NULL);
|
|
new_vse->cost = ComputeAdjustedPathCost(new_vse);
|
|
if (language_model_debug_level >= 3)
|
|
tprintf("Adjusted cost = %g\n", new_vse->cost);
|
|
|
|
// Invoke Top Choice language model component to make the final adjustments
|
|
// to new_vse->top_choice_flags.
|
|
if (!curr_state->viterbi_state_entries.empty() && new_vse->top_choice_flags) {
|
|
GenerateTopChoiceInfo(new_vse, parent_vse, curr_state);
|
|
}
|
|
|
|
// If language model components did not like this unichar - return.
|
|
bool keep = new_vse->top_choice_flags || liked_by_language_model;
|
|
if (!(top_choice_flags & kSmallestRatingFlag) && // no non-top choice paths
|
|
consistency_info.inconsistent_script) { // with inconsistent script
|
|
keep = false;
|
|
}
|
|
if (!keep) {
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("Language model components did not like this entry\n");
|
|
}
|
|
delete new_vse;
|
|
return false;
|
|
}
|
|
|
|
// Discard this entry if it represents a prunable path and
|
|
// language_model_viterbi_list_max_num_prunable such entries with a lower
|
|
// cost have already been recorded.
|
|
if (PrunablePath(*new_vse) &&
|
|
(curr_state->viterbi_state_entries_prunable_length >=
|
|
language_model_viterbi_list_max_num_prunable) &&
|
|
new_vse->cost >= curr_state->viterbi_state_entries_prunable_max_cost) {
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("Discarded ViterbiEntry with high cost %g max cost %g\n",
|
|
new_vse->cost,
|
|
curr_state->viterbi_state_entries_prunable_max_cost);
|
|
}
|
|
delete new_vse;
|
|
return false;
|
|
}
|
|
|
|
// Update best choice if needed.
|
|
if (word_end) {
|
|
UpdateBestChoice(new_vse, pain_points, word_res,
|
|
best_choice_bundle, blamer_bundle);
|
|
// Discard the entry if UpdateBestChoice() found flaws in it.
|
|
if (new_vse->cost >= WERD_CHOICE::kBadRating &&
|
|
new_vse != best_choice_bundle->best_vse) {
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("Discarded ViterbiEntry with high cost %g\n", new_vse->cost);
|
|
}
|
|
delete new_vse;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Add the new ViterbiStateEntry and to curr_state->viterbi_state_entries.
|
|
curr_state->viterbi_state_entries.add_sorted(ViterbiStateEntry::Compare,
|
|
false, new_vse);
|
|
curr_state->viterbi_state_entries_length++;
|
|
if (PrunablePath(*new_vse)) {
|
|
curr_state->viterbi_state_entries_prunable_length++;
|
|
}
|
|
|
|
// Update lms->viterbi_state_entries_prunable_max_cost and clear
|
|
// top_choice_flags of entries with ratings_sum than new_vse->ratings_sum.
|
|
if ((curr_state->viterbi_state_entries_prunable_length >=
|
|
language_model_viterbi_list_max_num_prunable) ||
|
|
new_vse->top_choice_flags) {
|
|
ASSERT_HOST(!curr_state->viterbi_state_entries.empty());
|
|
int prunable_counter = language_model_viterbi_list_max_num_prunable;
|
|
vit.set_to_list(&(curr_state->viterbi_state_entries));
|
|
for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) {
|
|
ViterbiStateEntry *curr_vse = vit.data();
|
|
// Clear the appropriate top choice flags of the entries in the
|
|
// list that have cost higher thank new_entry->cost
|
|
// (since they will not be top choices any more).
|
|
if (curr_vse->top_choice_flags && curr_vse != new_vse &&
|
|
curr_vse->cost > new_vse->cost) {
|
|
curr_vse->top_choice_flags &= ~(new_vse->top_choice_flags);
|
|
}
|
|
if (prunable_counter > 0 && PrunablePath(*curr_vse)) --prunable_counter;
|
|
// Update curr_state->viterbi_state_entries_prunable_max_cost.
|
|
if (prunable_counter == 0) {
|
|
curr_state->viterbi_state_entries_prunable_max_cost = vit.data()->cost;
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("Set viterbi_state_entries_prunable_max_cost to %g\n",
|
|
curr_state->viterbi_state_entries_prunable_max_cost);
|
|
}
|
|
prunable_counter = -1; // stop counting
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print the newly created ViterbiStateEntry.
|
|
if (language_model_debug_level > 2) {
|
|
new_vse->Print("New");
|
|
if (language_model_debug_level > 5)
|
|
curr_state->Print("Updated viterbi list");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void LanguageModel::GenerateTopChoiceInfo(ViterbiStateEntry *new_vse,
|
|
const ViterbiStateEntry *parent_vse,
|
|
LanguageModelState *lms) {
|
|
ViterbiStateEntry_IT vit(&(lms->viterbi_state_entries));
|
|
for (vit.mark_cycle_pt(); !vit.cycled_list() && new_vse->top_choice_flags &&
|
|
new_vse->cost >= vit.data()->cost; vit.forward()) {
|
|
// Clear the appropriate flags if the list already contains
|
|
// a top choice entry with a lower cost.
|
|
new_vse->top_choice_flags &= ~(vit.data()->top_choice_flags);
|
|
}
|
|
if (language_model_debug_level > 2) {
|
|
tprintf("GenerateTopChoiceInfo: top_choice_flags=0x%x\n",
|
|
new_vse->top_choice_flags);
|
|
}
|
|
}
|
|
|
|
LanguageModelDawgInfo *LanguageModel::GenerateDawgInfo(
|
|
bool word_end,
|
|
int curr_col, int curr_row,
|
|
const BLOB_CHOICE &b,
|
|
const ViterbiStateEntry *parent_vse) {
|
|
// Initialize active_dawgs from parent_vse if it is not NULL.
|
|
// Otherwise use very_beginning_active_dawgs_.
|
|
if (parent_vse == NULL) {
|
|
dawg_args_->active_dawgs = very_beginning_active_dawgs_;
|
|
dawg_args_->permuter = NO_PERM;
|
|
} else {
|
|
if (parent_vse->dawg_info == NULL) return NULL; // not a dict word path
|
|
dawg_args_->active_dawgs = parent_vse->dawg_info->active_dawgs;
|
|
dawg_args_->permuter = parent_vse->dawg_info->permuter;
|
|
}
|
|
|
|
// Deal with hyphenated words.
|
|
if (word_end && dict_->has_hyphen_end(b.unichar_id(), curr_col == 0)) {
|
|
if (language_model_debug_level > 0) tprintf("Hyphenated word found\n");
|
|
return new LanguageModelDawgInfo(dawg_args_->active_dawgs,
|
|
COMPOUND_PERM);
|
|
}
|
|
|
|
// Deal with compound words.
|
|
if (dict_->compound_marker(b.unichar_id()) &&
|
|
(parent_vse == NULL || parent_vse->dawg_info->permuter != NUMBER_PERM)) {
|
|
if (language_model_debug_level > 0) tprintf("Found compound marker\n");
|
|
// Do not allow compound operators at the beginning and end of the word.
|
|
// Do not allow more than one compound operator per word.
|
|
// Do not allow compounding of words with lengths shorter than
|
|
// language_model_min_compound_length
|
|
if (parent_vse == NULL || word_end ||
|
|
dawg_args_->permuter == COMPOUND_PERM ||
|
|
parent_vse->length < language_model_min_compound_length) return NULL;
|
|
|
|
int i;
|
|
// Check a that the path terminated before the current character is a word.
|
|
bool has_word_ending = false;
|
|
for (i = 0; i < parent_vse->dawg_info->active_dawgs->size(); ++i) {
|
|
const DawgPosition &pos = (*parent_vse->dawg_info->active_dawgs)[i];
|
|
const Dawg *pdawg = pos.dawg_index < 0
|
|
? NULL : dict_->GetDawg(pos.dawg_index);
|
|
if (pdawg == NULL || pos.back_to_punc) continue;;
|
|
if (pdawg->type() == DAWG_TYPE_WORD && pos.dawg_ref != NO_EDGE &&
|
|
pdawg->end_of_word(pos.dawg_ref)) {
|
|
has_word_ending = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!has_word_ending) return NULL;
|
|
|
|
if (language_model_debug_level > 0) tprintf("Compound word found\n");
|
|
return new LanguageModelDawgInfo(beginning_active_dawgs_, COMPOUND_PERM);
|
|
} // done dealing with compound words
|
|
|
|
LanguageModelDawgInfo *dawg_info = NULL;
|
|
|
|
// Call LetterIsOkay().
|
|
// Use the normalized IDs so that all shapes of ' can be allowed in words
|
|
// like don't.
|
|
const GenericVector<UNICHAR_ID>& normed_ids =
|
|
dict_->getUnicharset().normed_ids(b.unichar_id());
|
|
DawgPositionVector tmp_active_dawgs;
|
|
for (int i = 0; i < normed_ids.size(); ++i) {
|
|
if (language_model_debug_level > 2)
|
|
tprintf("Test Letter OK for unichar %d, normed %d\n",
|
|
b.unichar_id(), normed_ids[i]);
|
|
dict_->LetterIsOkay(dawg_args_, normed_ids[i],
|
|
word_end && i == normed_ids.size() - 1);
|
|
if (dawg_args_->permuter == NO_PERM) {
|
|
break;
|
|
} else if (i < normed_ids.size() - 1) {
|
|
tmp_active_dawgs = *dawg_args_->updated_dawgs;
|
|
dawg_args_->active_dawgs = &tmp_active_dawgs;
|
|
}
|
|
if (language_model_debug_level > 2)
|
|
tprintf("Letter was OK for unichar %d, normed %d\n",
|
|
b.unichar_id(), normed_ids[i]);
|
|
}
|
|
dawg_args_->active_dawgs = NULL;
|
|
if (dawg_args_->permuter != NO_PERM) {
|
|
dawg_info = new LanguageModelDawgInfo(dawg_args_->updated_dawgs,
|
|
dawg_args_->permuter);
|
|
} else if (language_model_debug_level > 3) {
|
|
tprintf("Letter %s not OK!\n",
|
|
dict_->getUnicharset().id_to_unichar(b.unichar_id()));
|
|
}
|
|
|
|
return dawg_info;
|
|
}
|
|
|
|
LanguageModelNgramInfo *LanguageModel::GenerateNgramInfo(
|
|
const char *unichar, float certainty, float denom,
|
|
int curr_col, int curr_row, float outline_length,
|
|
const ViterbiStateEntry *parent_vse) {
|
|
// Initialize parent context.
|
|
const char *pcontext_ptr = "";
|
|
int pcontext_unichar_step_len = 0;
|
|
if (parent_vse == NULL) {
|
|
pcontext_ptr = prev_word_str_.string();
|
|
pcontext_unichar_step_len = prev_word_unichar_step_len_;
|
|
} else {
|
|
pcontext_ptr = parent_vse->ngram_info->context.string();
|
|
pcontext_unichar_step_len =
|
|
parent_vse->ngram_info->context_unichar_step_len;
|
|
}
|
|
// Compute p(unichar | parent context).
|
|
int unichar_step_len = 0;
|
|
bool pruned = false;
|
|
float ngram_cost;
|
|
float ngram_and_classifier_cost =
|
|
ComputeNgramCost(unichar, certainty, denom,
|
|
pcontext_ptr, &unichar_step_len,
|
|
&pruned, &ngram_cost);
|
|
// Normalize just the ngram_and_classifier_cost by outline_length.
|
|
// The ngram_cost is used by the params_model, so it needs to be left as-is,
|
|
// and the params model cost will be normalized by outline_length.
|
|
ngram_and_classifier_cost *=
|
|
outline_length / language_model_ngram_rating_factor;
|
|
// Add the ngram_cost of the parent.
|
|
if (parent_vse != NULL) {
|
|
ngram_and_classifier_cost +=
|
|
parent_vse->ngram_info->ngram_and_classifier_cost;
|
|
ngram_cost += parent_vse->ngram_info->ngram_cost;
|
|
}
|
|
|
|
// Shorten parent context string by unichar_step_len unichars.
|
|
int num_remove = (unichar_step_len + pcontext_unichar_step_len -
|
|
language_model_ngram_order);
|
|
if (num_remove > 0) pcontext_unichar_step_len -= num_remove;
|
|
while (num_remove > 0 && *pcontext_ptr != '\0') {
|
|
pcontext_ptr += UNICHAR::utf8_step(pcontext_ptr);
|
|
--num_remove;
|
|
}
|
|
|
|
// Decide whether to prune this ngram path and update changed accordingly.
|
|
if (parent_vse != NULL && parent_vse->ngram_info->pruned) pruned = true;
|
|
|
|
// Construct and return the new LanguageModelNgramInfo.
|
|
LanguageModelNgramInfo *ngram_info = new LanguageModelNgramInfo(
|
|
pcontext_ptr, pcontext_unichar_step_len, pruned, ngram_cost,
|
|
ngram_and_classifier_cost);
|
|
ngram_info->context += unichar;
|
|
ngram_info->context_unichar_step_len += unichar_step_len;
|
|
assert(ngram_info->context_unichar_step_len <= language_model_ngram_order);
|
|
return ngram_info;
|
|
}
|
|
|
|
float LanguageModel::ComputeNgramCost(const char *unichar,
|
|
float certainty,
|
|
float denom,
|
|
const char *context,
|
|
int *unichar_step_len,
|
|
bool *found_small_prob,
|
|
float *ngram_cost) {
|
|
const char *context_ptr = context;
|
|
char *modified_context = NULL;
|
|
char *modified_context_end = NULL;
|
|
const char *unichar_ptr = unichar;
|
|
const char *unichar_end = unichar_ptr + strlen(unichar_ptr);
|
|
float prob = 0.0f;
|
|
int step = 0;
|
|
while (unichar_ptr < unichar_end &&
|
|
(step = UNICHAR::utf8_step(unichar_ptr)) > 0) {
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("prob(%s | %s)=%g\n", unichar_ptr, context_ptr,
|
|
dict_->ProbabilityInContext(context_ptr, -1, unichar_ptr, step));
|
|
}
|
|
prob += dict_->ProbabilityInContext(context_ptr, -1, unichar_ptr, step);
|
|
++(*unichar_step_len);
|
|
if (language_model_ngram_use_only_first_uft8_step) break;
|
|
unichar_ptr += step;
|
|
// If there are multiple UTF8 characters present in unichar, context is
|
|
// updated to include the previously examined characters from str,
|
|
// unless use_only_first_uft8_step is true.
|
|
if (unichar_ptr < unichar_end) {
|
|
if (modified_context == NULL) {
|
|
int context_len = strlen(context);
|
|
modified_context =
|
|
new char[context_len + strlen(unichar_ptr) + step + 1];
|
|
strncpy(modified_context, context, context_len);
|
|
modified_context_end = modified_context + context_len;
|
|
context_ptr = modified_context;
|
|
}
|
|
strncpy(modified_context_end, unichar_ptr - step, step);
|
|
modified_context_end += step;
|
|
*modified_context_end = '\0';
|
|
}
|
|
}
|
|
prob /= static_cast<float>(*unichar_step_len); // normalize
|
|
if (prob < language_model_ngram_small_prob) {
|
|
if (language_model_debug_level > 0) tprintf("Found small prob %g\n", prob);
|
|
*found_small_prob = true;
|
|
prob = language_model_ngram_small_prob;
|
|
}
|
|
*ngram_cost = -1.0*log2(prob);
|
|
float ngram_and_classifier_cost =
|
|
-1.0*log2(CertaintyScore(certainty)/denom) +
|
|
*ngram_cost * language_model_ngram_scale_factor;
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("-log [ p(%s) * p(%s | %s) ] = -log2(%g*%g) = %g\n", unichar,
|
|
unichar, context_ptr, CertaintyScore(certainty)/denom, prob,
|
|
ngram_and_classifier_cost);
|
|
}
|
|
if (modified_context != NULL) delete[] modified_context;
|
|
return ngram_and_classifier_cost;
|
|
}
|
|
|
|
float LanguageModel::ComputeDenom(BLOB_CHOICE_LIST *curr_list) {
|
|
if (curr_list->empty()) return 1.0f;
|
|
float denom = 0.0f;
|
|
int len = 0;
|
|
BLOB_CHOICE_IT c_it(curr_list);
|
|
for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
|
|
ASSERT_HOST(c_it.data() != NULL);
|
|
++len;
|
|
denom += CertaintyScore(c_it.data()->certainty());
|
|
}
|
|
assert(len != 0);
|
|
// The ideal situation would be to have the classifier scores for
|
|
// classifying each position as each of the characters in the unicharset.
|
|
// Since we can not do this because of speed, we add a very crude estimate
|
|
// of what these scores for the "missing" classifications would sum up to.
|
|
denom += (dict_->getUnicharset().size() - len) *
|
|
CertaintyScore(language_model_ngram_nonmatch_score);
|
|
|
|
return denom;
|
|
}
|
|
|
|
void LanguageModel::FillConsistencyInfo(
|
|
int curr_col,
|
|
bool word_end,
|
|
BLOB_CHOICE *b,
|
|
ViterbiStateEntry *parent_vse,
|
|
WERD_RES *word_res,
|
|
LMConsistencyInfo *consistency_info) {
|
|
const UNICHARSET &unicharset = dict_->getUnicharset();
|
|
UNICHAR_ID unichar_id = b->unichar_id();
|
|
BLOB_CHOICE* parent_b = parent_vse != NULL ? parent_vse->curr_b : NULL;
|
|
|
|
// Check punctuation validity.
|
|
if (unicharset.get_ispunctuation(unichar_id)) consistency_info->num_punc++;
|
|
if (dict_->GetPuncDawg() != NULL && !consistency_info->invalid_punc) {
|
|
if (dict_->compound_marker(unichar_id) && parent_b != NULL &&
|
|
(unicharset.get_isalpha(parent_b->unichar_id()) ||
|
|
unicharset.get_isdigit(parent_b->unichar_id()))) {
|
|
// reset punc_ref for compound words
|
|
consistency_info->punc_ref = NO_EDGE;
|
|
} else {
|
|
bool is_apos = dict_->is_apostrophe(unichar_id);
|
|
bool prev_is_numalpha = (parent_b != NULL &&
|
|
(unicharset.get_isalpha(parent_b->unichar_id()) ||
|
|
unicharset.get_isdigit(parent_b->unichar_id())));
|
|
UNICHAR_ID pattern_unichar_id =
|
|
(unicharset.get_isalpha(unichar_id) ||
|
|
unicharset.get_isdigit(unichar_id) ||
|
|
(is_apos && prev_is_numalpha)) ?
|
|
Dawg::kPatternUnicharID : unichar_id;
|
|
if (consistency_info->punc_ref == NO_EDGE ||
|
|
pattern_unichar_id != Dawg::kPatternUnicharID ||
|
|
dict_->GetPuncDawg()->edge_letter(consistency_info->punc_ref) !=
|
|
Dawg::kPatternUnicharID) {
|
|
NODE_REF node = Dict::GetStartingNode(dict_->GetPuncDawg(),
|
|
consistency_info->punc_ref);
|
|
consistency_info->punc_ref =
|
|
(node != NO_EDGE) ? dict_->GetPuncDawg()->edge_char_of(
|
|
node, pattern_unichar_id, word_end) : NO_EDGE;
|
|
if (consistency_info->punc_ref == NO_EDGE) {
|
|
consistency_info->invalid_punc = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update case related counters.
|
|
if (parent_vse != NULL && !word_end && dict_->compound_marker(unichar_id)) {
|
|
// Reset counters if we are dealing with a compound word.
|
|
consistency_info->num_lower = 0;
|
|
consistency_info->num_non_first_upper = 0;
|
|
}
|
|
else if (unicharset.get_islower(unichar_id)) {
|
|
consistency_info->num_lower++;
|
|
} else if ((parent_b != NULL) && unicharset.get_isupper(unichar_id)) {
|
|
if (unicharset.get_isupper(parent_b->unichar_id()) ||
|
|
consistency_info->num_lower > 0 ||
|
|
consistency_info->num_non_first_upper > 0) {
|
|
consistency_info->num_non_first_upper++;
|
|
}
|
|
}
|
|
|
|
// Initialize consistency_info->script_id (use script of unichar_id
|
|
// if it is not Common, use script id recorded by the parent otherwise).
|
|
// Set inconsistent_script to true if the script of the current unichar
|
|
// is not consistent with that of the parent.
|
|
consistency_info->script_id = unicharset.get_script(unichar_id);
|
|
// Hiragana and Katakana can mix with Han.
|
|
if (dict_->getUnicharset().han_sid() != dict_->getUnicharset().null_sid()) {
|
|
if ((unicharset.hiragana_sid() != unicharset.null_sid() &&
|
|
consistency_info->script_id == unicharset.hiragana_sid()) ||
|
|
(unicharset.katakana_sid() != unicharset.null_sid() &&
|
|
consistency_info->script_id == unicharset.katakana_sid())) {
|
|
consistency_info->script_id = dict_->getUnicharset().han_sid();
|
|
}
|
|
}
|
|
|
|
if (parent_vse != NULL &&
|
|
(parent_vse->consistency_info.script_id !=
|
|
dict_->getUnicharset().common_sid())) {
|
|
int parent_script_id = parent_vse->consistency_info.script_id;
|
|
// If script_id is Common, use script id of the parent instead.
|
|
if (consistency_info->script_id == dict_->getUnicharset().common_sid()) {
|
|
consistency_info->script_id = parent_script_id;
|
|
}
|
|
if (consistency_info->script_id != parent_script_id) {
|
|
consistency_info->inconsistent_script = true;
|
|
}
|
|
}
|
|
|
|
// Update chartype related counters.
|
|
if (unicharset.get_isalpha(unichar_id)) {
|
|
consistency_info->num_alphas++;
|
|
} else if (unicharset.get_isdigit(unichar_id)) {
|
|
consistency_info->num_digits++;
|
|
} else if (!unicharset.get_ispunctuation(unichar_id)) {
|
|
consistency_info->num_other++;
|
|
}
|
|
|
|
// Check font and spacing consistency.
|
|
if (fontinfo_table_->size() > 0 && parent_b != NULL) {
|
|
int fontinfo_id = -1;
|
|
if (parent_b->fontinfo_id() == b->fontinfo_id() ||
|
|
parent_b->fontinfo_id2() == b->fontinfo_id()) {
|
|
fontinfo_id = b->fontinfo_id();
|
|
} else if (parent_b->fontinfo_id() == b->fontinfo_id2() ||
|
|
parent_b->fontinfo_id2() == b->fontinfo_id2()) {
|
|
fontinfo_id = b->fontinfo_id2();
|
|
}
|
|
if(language_model_debug_level > 1) {
|
|
tprintf("pfont %s pfont %s font %s font2 %s common %s(%d)\n",
|
|
(parent_b->fontinfo_id() >= 0) ?
|
|
fontinfo_table_->get(parent_b->fontinfo_id()).name : "" ,
|
|
(parent_b->fontinfo_id2() >= 0) ?
|
|
fontinfo_table_->get(parent_b->fontinfo_id2()).name : "",
|
|
(b->fontinfo_id() >= 0) ?
|
|
fontinfo_table_->get(b->fontinfo_id()).name : "",
|
|
(fontinfo_id >= 0) ? fontinfo_table_->get(fontinfo_id).name : "",
|
|
(fontinfo_id >= 0) ? fontinfo_table_->get(fontinfo_id).name : "",
|
|
fontinfo_id);
|
|
}
|
|
if (!word_res->blob_widths.empty()) { // if we have widths/gaps info
|
|
bool expected_gap_found = false;
|
|
float expected_gap;
|
|
int temp_gap;
|
|
if (fontinfo_id >= 0) { // found a common font
|
|
ASSERT_HOST(fontinfo_id < fontinfo_table_->size());
|
|
if (fontinfo_table_->get(fontinfo_id).get_spacing(
|
|
parent_b->unichar_id(), unichar_id, &temp_gap)) {
|
|
expected_gap = temp_gap;
|
|
expected_gap_found = true;
|
|
}
|
|
} else {
|
|
consistency_info->inconsistent_font = true;
|
|
// Get an average of the expected gaps in each font
|
|
int num_addends = 0;
|
|
expected_gap = 0;
|
|
int temp_fid;
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (i == 0) {
|
|
temp_fid = parent_b->fontinfo_id();
|
|
} else if (i == 1) {
|
|
temp_fid = parent_b->fontinfo_id2();
|
|
} else if (i == 2) {
|
|
temp_fid = b->fontinfo_id();
|
|
} else {
|
|
temp_fid = b->fontinfo_id2();
|
|
}
|
|
ASSERT_HOST(temp_fid < 0 || fontinfo_table_->size());
|
|
if (temp_fid >= 0 && fontinfo_table_->get(temp_fid).get_spacing(
|
|
parent_b->unichar_id(), unichar_id, &temp_gap)) {
|
|
expected_gap += temp_gap;
|
|
num_addends++;
|
|
}
|
|
}
|
|
expected_gap_found = (num_addends > 0);
|
|
if (num_addends > 0) {
|
|
expected_gap /= static_cast<float>(num_addends);
|
|
}
|
|
}
|
|
if (expected_gap_found) {
|
|
float actual_gap =
|
|
static_cast<float>(word_res->GetBlobsGap(curr_col-1));
|
|
float gap_ratio = expected_gap / actual_gap;
|
|
// TODO(rays) The gaps seem to be way off most of the time, saved by
|
|
// the error here that the ratio was compared to 1/2, when it should
|
|
// have been 0.5f. Find the source of the gaps discrepancy and put
|
|
// the 0.5f here in place of 0.0f.
|
|
// Test on 2476595.sj, pages 0 to 6. (In French.)
|
|
if (gap_ratio < 0.0f || gap_ratio > 2.0f) {
|
|
consistency_info->num_inconsistent_spaces++;
|
|
}
|
|
if (language_model_debug_level > 1) {
|
|
tprintf("spacing for %s(%d) %s(%d) col %d: expected %g actual %g\n",
|
|
unicharset.id_to_unichar(parent_b->unichar_id()),
|
|
parent_b->unichar_id(), unicharset.id_to_unichar(unichar_id),
|
|
unichar_id, curr_col, expected_gap, actual_gap);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float LanguageModel::ComputeAdjustedPathCost(ViterbiStateEntry *vse) {
|
|
ASSERT_HOST(vse != NULL);
|
|
if (params_model_.Initialized()) {
|
|
float features[PTRAIN_NUM_FEATURE_TYPES];
|
|
ExtractFeaturesFromPath(*vse, features);
|
|
float cost = params_model_.ComputeCost(features);
|
|
if (language_model_debug_level > 3) {
|
|
tprintf("ComputeAdjustedPathCost %g ParamsModel features:\n", cost);
|
|
if (language_model_debug_level >= 5) {
|
|
for (int f = 0; f < PTRAIN_NUM_FEATURE_TYPES; ++f) {
|
|
tprintf("%s=%g\n", kParamsTrainingFeatureTypeName[f], features[f]);
|
|
}
|
|
}
|
|
}
|
|
return cost * vse->outline_length;
|
|
} else {
|
|
float adjustment = 1.0f;
|
|
if (vse->dawg_info == NULL || vse->dawg_info->permuter != FREQ_DAWG_PERM) {
|
|
adjustment += language_model_penalty_non_freq_dict_word;
|
|
}
|
|
if (vse->dawg_info == NULL) {
|
|
adjustment += language_model_penalty_non_dict_word;
|
|
if (vse->length > language_model_min_compound_length) {
|
|
adjustment += ((vse->length - language_model_min_compound_length) *
|
|
language_model_penalty_increment);
|
|
}
|
|
}
|
|
if (vse->associate_stats.shape_cost > 0) {
|
|
adjustment += vse->associate_stats.shape_cost /
|
|
static_cast<float>(vse->length);
|
|
}
|
|
if (language_model_ngram_on) {
|
|
ASSERT_HOST(vse->ngram_info != NULL);
|
|
return vse->ngram_info->ngram_and_classifier_cost * adjustment;
|
|
} else {
|
|
adjustment += ComputeConsistencyAdjustment(vse->dawg_info,
|
|
vse->consistency_info);
|
|
return vse->ratings_sum * adjustment;
|
|
}
|
|
}
|
|
}
|
|
|
|
void LanguageModel::UpdateBestChoice(
|
|
ViterbiStateEntry *vse,
|
|
LMPainPoints *pain_points,
|
|
WERD_RES *word_res,
|
|
BestChoiceBundle *best_choice_bundle,
|
|
BlamerBundle *blamer_bundle) {
|
|
bool truth_path;
|
|
WERD_CHOICE *word = ConstructWord(vse, word_res, &best_choice_bundle->fixpt,
|
|
blamer_bundle, &truth_path);
|
|
ASSERT_HOST(word != NULL);
|
|
if (dict_->stopper_debug_level >= 1) {
|
|
STRING word_str;
|
|
word->string_and_lengths(&word_str, NULL);
|
|
vse->Print(word_str.string());
|
|
}
|
|
if (language_model_debug_level > 0) {
|
|
word->print("UpdateBestChoice() constructed word");
|
|
}
|
|
// Record features from the current path if necessary.
|
|
ParamsTrainingHypothesis curr_hyp;
|
|
if (blamer_bundle != NULL) {
|
|
if (vse->dawg_info != NULL) vse->dawg_info->permuter =
|
|
static_cast<PermuterType>(word->permuter());
|
|
ExtractFeaturesFromPath(*vse, curr_hyp.features);
|
|
word->string_and_lengths(&(curr_hyp.str), NULL);
|
|
curr_hyp.cost = vse->cost; // record cost for error rate computations
|
|
if (language_model_debug_level > 0) {
|
|
tprintf("Raw features extracted from %s (cost=%g) [ ",
|
|
curr_hyp.str.string(), curr_hyp.cost);
|
|
for (int deb_i = 0; deb_i < PTRAIN_NUM_FEATURE_TYPES; ++deb_i) {
|
|
tprintf("%g ", curr_hyp.features[deb_i]);
|
|
}
|
|
tprintf("]\n");
|
|
}
|
|
// Record the current hypothesis in params_training_bundle.
|
|
blamer_bundle->AddHypothesis(curr_hyp);
|
|
if (truth_path)
|
|
blamer_bundle->UpdateBestRating(word->rating());
|
|
}
|
|
if (blamer_bundle != NULL && blamer_bundle->GuidedSegsearchStillGoing()) {
|
|
// The word was constructed solely for blamer_bundle->AddHypothesis, so
|
|
// we no longer need it.
|
|
delete word;
|
|
return;
|
|
}
|
|
if (word_res->chopped_word != NULL && !word_res->chopped_word->blobs.empty())
|
|
word->SetScriptPositions(false, word_res->chopped_word);
|
|
// Update and log new raw_choice if needed.
|
|
if (word_res->raw_choice == NULL ||
|
|
word->rating() < word_res->raw_choice->rating()) {
|
|
if (word_res->LogNewRawChoice(word) && language_model_debug_level > 0)
|
|
tprintf("Updated raw choice\n");
|
|
}
|
|
// Set the modified rating for best choice to vse->cost and log best choice.
|
|
word->set_rating(vse->cost);
|
|
// Call LogNewChoice() for best choice from Dict::adjust_word() since it
|
|
// computes adjust_factor that is used by the adaption code (e.g. by
|
|
// ClassifyAdaptableWord() to compute adaption acceptance thresholds).
|
|
// Note: the rating of the word is not adjusted.
|
|
dict_->adjust_word(word, vse->dawg_info == NULL,
|
|
vse->consistency_info.xht_decision, 0.0,
|
|
false, language_model_debug_level > 0);
|
|
// Hand ownership of the word over to the word_res.
|
|
if (!word_res->LogNewCookedChoice(dict_->tessedit_truncate_wordchoice_log,
|
|
dict_->stopper_debug_level >= 1, word)) {
|
|
// The word was so bad that it was deleted.
|
|
return;
|
|
}
|
|
if (word_res->best_choice == word) {
|
|
// Word was the new best.
|
|
if (dict_->AcceptableChoice(*word, vse->consistency_info.xht_decision) &&
|
|
AcceptablePath(*vse)) {
|
|
acceptable_choice_found_ = true;
|
|
}
|
|
// Update best_choice_bundle.
|
|
best_choice_bundle->updated = true;
|
|
best_choice_bundle->best_vse = vse;
|
|
if (language_model_debug_level > 0) {
|
|
tprintf("Updated best choice\n");
|
|
word->print_state("New state ");
|
|
}
|
|
// Update hyphen state if we are dealing with a dictionary word.
|
|
if (vse->dawg_info != NULL) {
|
|
if (dict_->has_hyphen_end(*word)) {
|
|
dict_->set_hyphen_word(*word, *(dawg_args_->active_dawgs));
|
|
} else {
|
|
dict_->reset_hyphen_vars(true);
|
|
}
|
|
}
|
|
|
|
if (blamer_bundle != NULL) {
|
|
blamer_bundle->set_best_choice_is_dict_and_top_choice(
|
|
vse->dawg_info != NULL && vse->top_choice_flags);
|
|
}
|
|
}
|
|
if (wordrec_display_segmentations && word_res->chopped_word != NULL) {
|
|
word->DisplaySegmentation(word_res->chopped_word);
|
|
}
|
|
}
|
|
|
|
void LanguageModel::ExtractFeaturesFromPath(
|
|
const ViterbiStateEntry &vse, float features[]) {
|
|
memset(features, 0, sizeof(float) * PTRAIN_NUM_FEATURE_TYPES);
|
|
// Record dictionary match info.
|
|
int len = vse.length <= kMaxSmallWordUnichars ? 0 :
|
|
vse.length <= kMaxMediumWordUnichars ? 1 : 2;
|
|
if (vse.dawg_info != NULL) {
|
|
int permuter = vse.dawg_info->permuter;
|
|
if (permuter == NUMBER_PERM || permuter == USER_PATTERN_PERM) {
|
|
if (vse.consistency_info.num_digits == vse.length) {
|
|
features[PTRAIN_DIGITS_SHORT+len] = 1.0;
|
|
} else {
|
|
features[PTRAIN_NUM_SHORT+len] = 1.0;
|
|
}
|
|
} else if (permuter == DOC_DAWG_PERM) {
|
|
features[PTRAIN_DOC_SHORT+len] = 1.0;
|
|
} else if (permuter == SYSTEM_DAWG_PERM || permuter == USER_DAWG_PERM ||
|
|
permuter == COMPOUND_PERM) {
|
|
features[PTRAIN_DICT_SHORT+len] = 1.0;
|
|
} else if (permuter == FREQ_DAWG_PERM) {
|
|
features[PTRAIN_FREQ_SHORT+len] = 1.0;
|
|
}
|
|
}
|
|
// Record shape cost feature (normalized by path length).
|
|
features[PTRAIN_SHAPE_COST_PER_CHAR] =
|
|
vse.associate_stats.shape_cost / static_cast<float>(vse.length);
|
|
// Record ngram cost. (normalized by the path length).
|
|
features[PTRAIN_NGRAM_COST_PER_CHAR] = 0.0;
|
|
if (vse.ngram_info != NULL) {
|
|
features[PTRAIN_NGRAM_COST_PER_CHAR] =
|
|
vse.ngram_info->ngram_cost / static_cast<float>(vse.length);
|
|
}
|
|
// Record consistency-related features.
|
|
// Disabled this feature for due to its poor performance.
|
|
// features[PTRAIN_NUM_BAD_PUNC] = vse.consistency_info.NumInconsistentPunc();
|
|
features[PTRAIN_NUM_BAD_CASE] = vse.consistency_info.NumInconsistentCase();
|
|
features[PTRAIN_XHEIGHT_CONSISTENCY] = vse.consistency_info.xht_decision;
|
|
features[PTRAIN_NUM_BAD_CHAR_TYPE] = vse.dawg_info == NULL ?
|
|
vse.consistency_info.NumInconsistentChartype() : 0.0;
|
|
features[PTRAIN_NUM_BAD_SPACING] =
|
|
vse.consistency_info.NumInconsistentSpaces();
|
|
// Disabled this feature for now due to its poor performance.
|
|
// features[PTRAIN_NUM_BAD_FONT] = vse.consistency_info.inconsistent_font;
|
|
|
|
// Classifier-related features.
|
|
features[PTRAIN_RATING_PER_CHAR] =
|
|
vse.ratings_sum / static_cast<float>(vse.outline_length);
|
|
}
|
|
|
|
WERD_CHOICE *LanguageModel::ConstructWord(
|
|
ViterbiStateEntry *vse,
|
|
WERD_RES *word_res,
|
|
DANGERR *fixpt,
|
|
BlamerBundle *blamer_bundle,
|
|
bool *truth_path) {
|
|
if (truth_path != NULL) {
|
|
*truth_path =
|
|
(blamer_bundle != NULL &&
|
|
vse->length == blamer_bundle->correct_segmentation_length());
|
|
}
|
|
BLOB_CHOICE *curr_b = vse->curr_b;
|
|
ViterbiStateEntry *curr_vse = vse;
|
|
|
|
int i;
|
|
bool compound = dict_->hyphenated(); // treat hyphenated words as compound
|
|
|
|
// Re-compute the variance of the width-to-height ratios (since we now
|
|
// can compute the mean over the whole word).
|
|
float full_wh_ratio_mean = 0.0f;
|
|
if (vse->associate_stats.full_wh_ratio_var != 0.0f) {
|
|
vse->associate_stats.shape_cost -= vse->associate_stats.full_wh_ratio_var;
|
|
full_wh_ratio_mean = (vse->associate_stats.full_wh_ratio_total /
|
|
static_cast<float>(vse->length));
|
|
vse->associate_stats.full_wh_ratio_var = 0.0f;
|
|
}
|
|
|
|
// Construct a WERD_CHOICE by tracing parent pointers.
|
|
WERD_CHOICE *word = new WERD_CHOICE(word_res->uch_set, vse->length);
|
|
word->set_length(vse->length);
|
|
int total_blobs = 0;
|
|
for (i = (vse->length-1); i >= 0; --i) {
|
|
if (blamer_bundle != NULL && truth_path != NULL && *truth_path &&
|
|
!blamer_bundle->MatrixPositionCorrect(i, curr_b->matrix_cell())) {
|
|
*truth_path = false;
|
|
}
|
|
// The number of blobs used for this choice is row - col + 1.
|
|
int num_blobs = curr_b->matrix_cell().row - curr_b->matrix_cell().col + 1;
|
|
total_blobs += num_blobs;
|
|
word->set_blob_choice(i, num_blobs, curr_b);
|
|
// Update the width-to-height ratio variance. Useful non-space delimited
|
|
// languages to ensure that the blobs are of uniform width.
|
|
// Skip leading and trailing punctuation when computing the variance.
|
|
if ((full_wh_ratio_mean != 0.0f &&
|
|
((curr_vse != vse && curr_vse->parent_vse != NULL) ||
|
|
!dict_->getUnicharset().get_ispunctuation(curr_b->unichar_id())))) {
|
|
vse->associate_stats.full_wh_ratio_var +=
|
|
pow(full_wh_ratio_mean - curr_vse->associate_stats.full_wh_ratio, 2);
|
|
if (language_model_debug_level > 2) {
|
|
tprintf("full_wh_ratio_var += (%g-%g)^2\n",
|
|
full_wh_ratio_mean, curr_vse->associate_stats.full_wh_ratio);
|
|
}
|
|
}
|
|
|
|
// Mark the word as compound if compound permuter was set for any of
|
|
// the unichars on the path (usually this will happen for unichars
|
|
// that are compounding operators, like "-" and "/").
|
|
if (!compound && curr_vse->dawg_info &&
|
|
curr_vse->dawg_info->permuter == COMPOUND_PERM) compound = true;
|
|
|
|
// Update curr_* pointers.
|
|
curr_vse = curr_vse->parent_vse;
|
|
if (curr_vse == NULL) break;
|
|
curr_b = curr_vse->curr_b;
|
|
}
|
|
ASSERT_HOST(i == 0); // check that we recorded all the unichar ids.
|
|
ASSERT_HOST(total_blobs == word_res->ratings->dimension());
|
|
// Re-adjust shape cost to include the updated width-to-height variance.
|
|
if (full_wh_ratio_mean != 0.0f) {
|
|
vse->associate_stats.shape_cost += vse->associate_stats.full_wh_ratio_var;
|
|
}
|
|
|
|
word->set_rating(vse->ratings_sum);
|
|
word->set_certainty(vse->min_certainty);
|
|
word->set_x_heights(vse->consistency_info.BodyMinXHeight(),
|
|
vse->consistency_info.BodyMaxXHeight());
|
|
if (vse->dawg_info != NULL) {
|
|
word->set_permuter(compound ? COMPOUND_PERM : vse->dawg_info->permuter);
|
|
} else if (language_model_ngram_on && !vse->ngram_info->pruned) {
|
|
word->set_permuter(NGRAM_PERM);
|
|
} else if (vse->top_choice_flags) {
|
|
word->set_permuter(TOP_CHOICE_PERM);
|
|
} else {
|
|
word->set_permuter(NO_PERM);
|
|
}
|
|
word->set_dangerous_ambig_found_(!dict_->NoDangerousAmbig(word, fixpt, true,
|
|
word_res->ratings));
|
|
return word;
|
|
}
|
|
|
|
} // namespace tesseract
|