mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-10 12:57:48 +08:00
524a61452d
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen closes #14 Commits:6317305
doxygen9f42f69
doxygen0fc4d52
doxygen37b4b55
fix typobded8f1
some more doxy020eb00
slight tweak524666d
doxygenify2a36a3e
doxygenify229d218
doxygenify7fd28ae
doxygenifya8c64bc
doxygenifyf5d21b6
fix5d8ede8
doxygenifya58a4e0
language_model.cppfa85709
lm_pain_points.cpp lm_state.cpp6418da3
merge06190ba
Merge branch 'old_doxygen_merge' into more-doxygen84acf08
Merge branch 'master' into more-doxygen50fe1ff
pagewalk.cpp cube_reco_context.cpp2982583
change to relative192a24a
applybox.cpp, take one8eeb053
delete docs for obsolete params52e4c77
modernise classify/ocrfeatures.cpp2a1cba6
modernise cutil/emalloc.cpp773e006
silence doxygen warningaeb1731
silence doxygen warningf18387f
silence doxygen; new params are unused?15ad6bd
doxygenify cutil/efio.cppc8b5dad
doxygenify cutil/danerror.cpp784450f
the globals and exceptions parts are obsolete; remove8bca324
doxygen classify/normfeat.cpp9bcbe16
doxygen classify/normmatch.cppaa9a971
doxygen ccmain/cube_control.cppc083ff2
doxygen ccmain/cube_reco_context.cppf842850
params changed5c94f12
doxygen ccmain/cubeclassifier.cpp15ba750
case sensitivef5c71d4
case sensitivef85655b
doxygen classify/intproto.cpp4bbc7aa
partial doxygen classify/mfx.cppdbb6041
partial doxygen classify/intproto.cpp2aa72db
finish doxygen classify/intproto.cpp0b8de99
doxygen training/mftraining.cpp0b5b35c
partial doxygen ccstruct/coutln.cppb81c766
partial doxygen ccstruct/coutln.cpp40fc415
finished? doxygen ccstruct/coutln.cpp6e4165c
doxygen classify/clusttool.cpp0267dec
doxygen classify/cutoffs.cpp7f0c70c
doxygen classify/fpoint.cpp512f3bd
ignore ~ files5668a52
doxygen classify/intmatcher.cpp84788d4
doxygen classify/kdtree.cpp29f36ca
doxygen classify/mfoutline.cpp40b94b1
silence doxygen warnings6c511b9
doxygen classify/mfx.cppf9b4080
doxygen classify/outfeat.cppaa1df05
doxygen classify/picofeat.cppcc5f466
doxygen training/cntraining.cppcce044f
doxygen training/commontraining.cpp167e216
missing param9498383
renamed params37eeac2
renamed paramd87b5dd
casec8ee174
renamed paramsb858db8
typo4c2a838
h2 context?81a2c0c
fix some param names; add some missing params, no docsbcf8a4c
add some missing params, no docsaf77f86
add some missing params, no docs; fix some param names01df24e
fix some params6161056
fix some params68508b6
fix some params285aeb6
doxygen complains here no matter what529bcfa
rm some missing params, typoscd21226
rm some missing params, add some new ones48a4bc2
fix paramsc844628
missing param312ce37
missing param; rename oneec2fdec
missing param05e15e0
missing paramsd515858
change "<" to < to make doxygen happyb476a28
wrong place
219 lines
9.2 KiB
C++
219 lines
9.2 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: pain_points.cpp
|
|
// Description: Functions that utilize the knowledge about the properties
|
|
// of the paths explored by the segmentation search in order
|
|
// to "pain points" - the locations in the ratings matrix
|
|
// which should be classified next.
|
|
// Author: Rika Antonova
|
|
// Created: Mon Jun 20 11:26:43 PST 2012
|
|
//
|
|
// (C) Copyright 2012, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "lm_pain_points.h"
|
|
|
|
#include "associate.h"
|
|
#include "dict.h"
|
|
#include "genericheap.h"
|
|
#include "lm_state.h"
|
|
#include "matrix.h"
|
|
#include "pageres.h"
|
|
|
|
namespace tesseract {
|
|
|
|
const float LMPainPoints::kDefaultPainPointPriorityAdjustment = 2.0f;
|
|
const float LMPainPoints::kLooseMaxCharWhRatio = 2.5f;
|
|
|
|
LMPainPointsType LMPainPoints::Deque(MATRIX_COORD *pp, float *priority) {
|
|
for (int h = 0; h < LM_PPTYPE_NUM; ++h) {
|
|
if (pain_points_heaps_[h].empty()) continue;
|
|
*priority = pain_points_heaps_[h].PeekTop().key;
|
|
*pp = pain_points_heaps_[h].PeekTop().data;
|
|
pain_points_heaps_[h].Pop(NULL);
|
|
return static_cast<LMPainPointsType>(h);
|
|
}
|
|
return LM_PPTYPE_NUM;
|
|
}
|
|
|
|
void LMPainPoints::GenerateInitial(WERD_RES *word_res) {
|
|
MATRIX *ratings = word_res->ratings;
|
|
AssociateStats associate_stats;
|
|
for (int col = 0; col < ratings->dimension(); ++col) {
|
|
int row_end = MIN(ratings->dimension(), col + ratings->bandwidth() + 1);
|
|
for (int row = col + 1; row < row_end; ++row) {
|
|
MATRIX_COORD coord(col, row);
|
|
if (coord.Valid(*ratings) &&
|
|
ratings->get(col, row) != NOT_CLASSIFIED) continue;
|
|
// Add an initial pain point if needed.
|
|
if (ratings->Classified(col, row - 1, dict_->WildcardID()) ||
|
|
(col + 1 < ratings->dimension() &&
|
|
ratings->Classified(col + 1, row, dict_->WildcardID()))) {
|
|
GeneratePainPoint(col, row, LM_PPTYPE_SHAPE, 0.0,
|
|
true, max_char_wh_ratio_, word_res);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LMPainPoints::GenerateFromPath(float rating_cert_scale,
|
|
ViterbiStateEntry *vse,
|
|
WERD_RES *word_res) {
|
|
ViterbiStateEntry *curr_vse = vse;
|
|
BLOB_CHOICE *curr_b = vse->curr_b;
|
|
// The following pain point generation and priority calculation approaches
|
|
// prioritize exploring paths with low average rating of the known part of
|
|
// the path, while not relying on the ratings of the pieces to be combined.
|
|
//
|
|
// A pain point to combine the neighbors is generated for each pair of
|
|
// neighboring blobs on the path (the path is represented by vse argument
|
|
// given to GenerateFromPath()). The priority of each pain point is set to
|
|
// the average rating (per outline length) of the path, not including the
|
|
// ratings of the blobs to be combined.
|
|
// The ratings of the blobs to be combined are not used to calculate the
|
|
// priority, since it is not possible to determine from their magnitude
|
|
// whether it will be beneficial to combine the blobs. The reason is that
|
|
// chopped junk blobs (/ | - ') can have very good (low) ratings, however
|
|
// combining them will be beneficial. Blobs with high ratings might be
|
|
// over-joined pieces of characters, but also could be blobs from an unseen
|
|
// font or chopped pieces of complex characters.
|
|
while (curr_vse->parent_vse != NULL) {
|
|
ViterbiStateEntry* parent_vse = curr_vse->parent_vse;
|
|
const MATRIX_COORD& curr_cell = curr_b->matrix_cell();
|
|
const MATRIX_COORD& parent_cell = parent_vse->curr_b->matrix_cell();
|
|
MATRIX_COORD pain_coord(parent_cell.col, curr_cell.row);
|
|
if (!pain_coord.Valid(*word_res->ratings) ||
|
|
!word_res->ratings->Classified(parent_cell.col, curr_cell.row,
|
|
dict_->WildcardID())) {
|
|
// rat_subtr contains ratings sum of the two adjacent blobs to be merged.
|
|
// rat_subtr will be subtracted from the ratings sum of the path, since
|
|
// the blobs will be joined into a new blob, whose rating is yet unknown.
|
|
float rat_subtr = curr_b->rating() + parent_vse->curr_b->rating();
|
|
// ol_subtr contains the outline length of the blobs that will be joined.
|
|
float ol_subtr =
|
|
AssociateUtils::ComputeOutlineLength(rating_cert_scale, *curr_b) +
|
|
AssociateUtils::ComputeOutlineLength(rating_cert_scale,
|
|
*(parent_vse->curr_b));
|
|
// ol_dif is the outline of the path without the two blobs to be joined.
|
|
float ol_dif = vse->outline_length - ol_subtr;
|
|
// priority is set to the average rating of the path per unit of outline,
|
|
// not counting the ratings of the pieces to be joined.
|
|
float priority = ol_dif > 0 ? (vse->ratings_sum-rat_subtr)/ol_dif : 0.0;
|
|
GeneratePainPoint(pain_coord.col, pain_coord.row, LM_PPTYPE_PATH,
|
|
priority, true, max_char_wh_ratio_, word_res);
|
|
} else if (debug_level_ > 3) {
|
|
tprintf("NO pain point (Classified) for col=%d row=%d type=%s\n",
|
|
pain_coord.col, pain_coord.row,
|
|
LMPainPointsTypeName[LM_PPTYPE_PATH]);
|
|
BLOB_CHOICE_IT b_it(word_res->ratings->get(pain_coord.col,
|
|
pain_coord.row));
|
|
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
|
|
BLOB_CHOICE* choice = b_it.data();
|
|
choice->print_full();
|
|
}
|
|
}
|
|
|
|
curr_vse = parent_vse;
|
|
curr_b = curr_vse->curr_b;
|
|
}
|
|
}
|
|
|
|
void LMPainPoints::GenerateFromAmbigs(const DANGERR &fixpt,
|
|
ViterbiStateEntry *vse,
|
|
WERD_RES *word_res) {
|
|
// Begins and ends in DANGERR vector now record the blob indices as used
|
|
// by the ratings matrix.
|
|
for (int d = 0; d < fixpt.size(); ++d) {
|
|
const DANGERR_INFO &danger = fixpt[d];
|
|
// Only use dangerous ambiguities.
|
|
if (danger.dangerous) {
|
|
GeneratePainPoint(danger.begin, danger.end - 1,
|
|
LM_PPTYPE_AMBIG, vse->cost, true,
|
|
kLooseMaxCharWhRatio, word_res);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool LMPainPoints::GeneratePainPoint(
|
|
int col, int row, LMPainPointsType pp_type, float special_priority,
|
|
bool ok_to_extend, float max_char_wh_ratio,
|
|
WERD_RES *word_res) {
|
|
MATRIX_COORD coord(col, row);
|
|
if (coord.Valid(*word_res->ratings) &&
|
|
word_res->ratings->Classified(col, row, dict_->WildcardID())) {
|
|
return false;
|
|
}
|
|
if (debug_level_ > 3) {
|
|
tprintf("Generating pain point for col=%d row=%d type=%s\n",
|
|
col, row, LMPainPointsTypeName[pp_type]);
|
|
}
|
|
// Compute associate stats.
|
|
AssociateStats associate_stats;
|
|
AssociateUtils::ComputeStats(col, row, NULL, 0, fixed_pitch_,
|
|
max_char_wh_ratio, word_res, debug_level_,
|
|
&associate_stats);
|
|
// For fixed-pitch fonts/languages: if the current combined blob overlaps
|
|
// the next blob on the right and it is ok to extend the blob, try extending
|
|
// the blob until there is no overlap with the next blob on the right or
|
|
// until the width-to-height ratio becomes too large.
|
|
if (ok_to_extend) {
|
|
while (associate_stats.bad_fixed_pitch_right_gap &&
|
|
row + 1 < word_res->ratings->dimension() &&
|
|
!associate_stats.bad_fixed_pitch_wh_ratio) {
|
|
AssociateUtils::ComputeStats(col, ++row, NULL, 0, fixed_pitch_,
|
|
max_char_wh_ratio, word_res, debug_level_,
|
|
&associate_stats);
|
|
}
|
|
}
|
|
if (associate_stats.bad_shape) {
|
|
if (debug_level_ > 3) {
|
|
tprintf("Discarded pain point with a bad shape\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Insert the new pain point into pain_points_heap_.
|
|
if (pain_points_heaps_[pp_type].size() < max_heap_size_) {
|
|
// Compute pain point priority.
|
|
float priority;
|
|
if (pp_type == LM_PPTYPE_PATH) {
|
|
priority = special_priority;
|
|
} else {
|
|
priority = associate_stats.gap_sum;
|
|
}
|
|
MatrixCoordPair pain_point(priority, MATRIX_COORD(col, row));
|
|
pain_points_heaps_[pp_type].Push(&pain_point);
|
|
if (debug_level_) {
|
|
tprintf("Added pain point with priority %g\n", priority);
|
|
}
|
|
return true;
|
|
} else {
|
|
if (debug_level_) tprintf("Pain points heap is full\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Adjusts the pain point coordinates to cope with expansion of the ratings
|
|
* matrix due to a split of the blob with the given index.
|
|
*/
|
|
void LMPainPoints::RemapForSplit(int index) {
|
|
for (int i = 0; i < LM_PPTYPE_NUM; ++i) {
|
|
GenericVector<MatrixCoordPair>* heap = pain_points_heaps_[i].heap();
|
|
for (int j = 0; j < heap->size(); ++j)
|
|
(*heap)[j].data.MapForSplit(index);
|
|
}
|
|
}
|
|
|
|
} // namespace tesseract
|
|
|