tesseract/wordrec/lm_pain_points.cpp
Jim O'Regan 524a61452d Doxygen
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen
closes 

Commits:
6317305  doxygen
9f42f69  doxygen
0fc4d52  doxygen
37b4b55  fix typo
bded8f1  some more doxy
020eb00  slight tweak
524666d  doxygenify
2a36a3e  doxygenify
229d218  doxygenify
7fd28ae  doxygenify
a8c64bc  doxygenify
f5d21b6  fix
5d8ede8  doxygenify
a58a4e0  language_model.cpp
fa85709  lm_pain_points.cpp lm_state.cpp
6418da3  merge
06190ba  Merge branch 'old_doxygen_merge' into more-doxygen
84acf08  Merge branch 'master' into more-doxygen
50fe1ff  pagewalk.cpp cube_reco_context.cpp
2982583  change to relative
192a24a  applybox.cpp, take one
8eeb053  delete docs for obsolete params
52e4c77  modernise classify/ocrfeatures.cpp
2a1cba6  modernise cutil/emalloc.cpp
773e006  silence doxygen warning
aeb1731  silence doxygen warning
f18387f  silence doxygen; new params are unused?
15ad6bd  doxygenify cutil/efio.cpp
c8b5dad  doxygenify cutil/danerror.cpp
784450f  the globals and exceptions parts are obsolete; remove
8bca324  doxygen classify/normfeat.cpp
9bcbe16  doxygen classify/normmatch.cpp
aa9a971  doxygen ccmain/cube_control.cpp
c083ff2  doxygen ccmain/cube_reco_context.cpp
f842850  params changed
5c94f12  doxygen ccmain/cubeclassifier.cpp
15ba750  case sensitive
f5c71d4  case sensitive
f85655b  doxygen classify/intproto.cpp
4bbc7aa  partial doxygen classify/mfx.cpp
dbb6041  partial doxygen classify/intproto.cpp
2aa72db  finish doxygen classify/intproto.cpp
0b8de99  doxygen training/mftraining.cpp
0b5b35c  partial doxygen ccstruct/coutln.cpp
b81c766  partial doxygen ccstruct/coutln.cpp
40fc415  finished? doxygen ccstruct/coutln.cpp
6e4165c  doxygen classify/clusttool.cpp
0267dec  doxygen classify/cutoffs.cpp
7f0c70c  doxygen classify/fpoint.cpp
512f3bd  ignore ~ files
5668a52  doxygen classify/intmatcher.cpp
84788d4  doxygen classify/kdtree.cpp
29f36ca  doxygen classify/mfoutline.cpp
40b94b1  silence doxygen warnings
6c511b9  doxygen classify/mfx.cpp
f9b4080  doxygen classify/outfeat.cpp
aa1df05  doxygen classify/picofeat.cpp
cc5f466  doxygen training/cntraining.cpp
cce044f  doxygen training/commontraining.cpp
167e216  missing param
9498383  renamed params
37eeac2  renamed param
d87b5dd  case
c8ee174  renamed params
b858db8  typo
4c2a838  h2 context?
81a2c0c  fix some param names; add some missing params, no docs
bcf8a4c  add some missing params, no docs
af77f86  add some missing params, no docs; fix some param names
01df24e  fix some params
6161056  fix some params
68508b6  fix some params
285aeb6  doxygen complains here no matter what
529bcfa  rm some missing params, typos
cd21226  rm some missing params, add some new ones
48a4bc2  fix params
c844628  missing param
312ce37  missing param; rename one
ec2fdec  missing param
05e15e0  missing params
d515858  change "<" to &lt; to make doxygen happy
b476a28  wrong place
2015-07-20 18:48:00 +01:00

219 lines
9.2 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: pain_points.cpp
// Description: Functions that utilize the knowledge about the properties
// of the paths explored by the segmentation search in order
// to "pain points" - the locations in the ratings matrix
// which should be classified next.
// Author: Rika Antonova
// Created: Mon Jun 20 11:26:43 PST 2012
//
// (C) Copyright 2012, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "lm_pain_points.h"
#include "associate.h"
#include "dict.h"
#include "genericheap.h"
#include "lm_state.h"
#include "matrix.h"
#include "pageres.h"
namespace tesseract {
const float LMPainPoints::kDefaultPainPointPriorityAdjustment = 2.0f;
const float LMPainPoints::kLooseMaxCharWhRatio = 2.5f;
LMPainPointsType LMPainPoints::Deque(MATRIX_COORD *pp, float *priority) {
for (int h = 0; h < LM_PPTYPE_NUM; ++h) {
if (pain_points_heaps_[h].empty()) continue;
*priority = pain_points_heaps_[h].PeekTop().key;
*pp = pain_points_heaps_[h].PeekTop().data;
pain_points_heaps_[h].Pop(NULL);
return static_cast<LMPainPointsType>(h);
}
return LM_PPTYPE_NUM;
}
void LMPainPoints::GenerateInitial(WERD_RES *word_res) {
MATRIX *ratings = word_res->ratings;
AssociateStats associate_stats;
for (int col = 0; col < ratings->dimension(); ++col) {
int row_end = MIN(ratings->dimension(), col + ratings->bandwidth() + 1);
for (int row = col + 1; row < row_end; ++row) {
MATRIX_COORD coord(col, row);
if (coord.Valid(*ratings) &&
ratings->get(col, row) != NOT_CLASSIFIED) continue;
// Add an initial pain point if needed.
if (ratings->Classified(col, row - 1, dict_->WildcardID()) ||
(col + 1 < ratings->dimension() &&
ratings->Classified(col + 1, row, dict_->WildcardID()))) {
GeneratePainPoint(col, row, LM_PPTYPE_SHAPE, 0.0,
true, max_char_wh_ratio_, word_res);
}
}
}
}
void LMPainPoints::GenerateFromPath(float rating_cert_scale,
ViterbiStateEntry *vse,
WERD_RES *word_res) {
ViterbiStateEntry *curr_vse = vse;
BLOB_CHOICE *curr_b = vse->curr_b;
// The following pain point generation and priority calculation approaches
// prioritize exploring paths with low average rating of the known part of
// the path, while not relying on the ratings of the pieces to be combined.
//
// A pain point to combine the neighbors is generated for each pair of
// neighboring blobs on the path (the path is represented by vse argument
// given to GenerateFromPath()). The priority of each pain point is set to
// the average rating (per outline length) of the path, not including the
// ratings of the blobs to be combined.
// The ratings of the blobs to be combined are not used to calculate the
// priority, since it is not possible to determine from their magnitude
// whether it will be beneficial to combine the blobs. The reason is that
// chopped junk blobs (/ | - ') can have very good (low) ratings, however
// combining them will be beneficial. Blobs with high ratings might be
// over-joined pieces of characters, but also could be blobs from an unseen
// font or chopped pieces of complex characters.
while (curr_vse->parent_vse != NULL) {
ViterbiStateEntry* parent_vse = curr_vse->parent_vse;
const MATRIX_COORD& curr_cell = curr_b->matrix_cell();
const MATRIX_COORD& parent_cell = parent_vse->curr_b->matrix_cell();
MATRIX_COORD pain_coord(parent_cell.col, curr_cell.row);
if (!pain_coord.Valid(*word_res->ratings) ||
!word_res->ratings->Classified(parent_cell.col, curr_cell.row,
dict_->WildcardID())) {
// rat_subtr contains ratings sum of the two adjacent blobs to be merged.
// rat_subtr will be subtracted from the ratings sum of the path, since
// the blobs will be joined into a new blob, whose rating is yet unknown.
float rat_subtr = curr_b->rating() + parent_vse->curr_b->rating();
// ol_subtr contains the outline length of the blobs that will be joined.
float ol_subtr =
AssociateUtils::ComputeOutlineLength(rating_cert_scale, *curr_b) +
AssociateUtils::ComputeOutlineLength(rating_cert_scale,
*(parent_vse->curr_b));
// ol_dif is the outline of the path without the two blobs to be joined.
float ol_dif = vse->outline_length - ol_subtr;
// priority is set to the average rating of the path per unit of outline,
// not counting the ratings of the pieces to be joined.
float priority = ol_dif > 0 ? (vse->ratings_sum-rat_subtr)/ol_dif : 0.0;
GeneratePainPoint(pain_coord.col, pain_coord.row, LM_PPTYPE_PATH,
priority, true, max_char_wh_ratio_, word_res);
} else if (debug_level_ > 3) {
tprintf("NO pain point (Classified) for col=%d row=%d type=%s\n",
pain_coord.col, pain_coord.row,
LMPainPointsTypeName[LM_PPTYPE_PATH]);
BLOB_CHOICE_IT b_it(word_res->ratings->get(pain_coord.col,
pain_coord.row));
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
BLOB_CHOICE* choice = b_it.data();
choice->print_full();
}
}
curr_vse = parent_vse;
curr_b = curr_vse->curr_b;
}
}
void LMPainPoints::GenerateFromAmbigs(const DANGERR &fixpt,
ViterbiStateEntry *vse,
WERD_RES *word_res) {
// Begins and ends in DANGERR vector now record the blob indices as used
// by the ratings matrix.
for (int d = 0; d < fixpt.size(); ++d) {
const DANGERR_INFO &danger = fixpt[d];
// Only use dangerous ambiguities.
if (danger.dangerous) {
GeneratePainPoint(danger.begin, danger.end - 1,
LM_PPTYPE_AMBIG, vse->cost, true,
kLooseMaxCharWhRatio, word_res);
}
}
}
bool LMPainPoints::GeneratePainPoint(
int col, int row, LMPainPointsType pp_type, float special_priority,
bool ok_to_extend, float max_char_wh_ratio,
WERD_RES *word_res) {
MATRIX_COORD coord(col, row);
if (coord.Valid(*word_res->ratings) &&
word_res->ratings->Classified(col, row, dict_->WildcardID())) {
return false;
}
if (debug_level_ > 3) {
tprintf("Generating pain point for col=%d row=%d type=%s\n",
col, row, LMPainPointsTypeName[pp_type]);
}
// Compute associate stats.
AssociateStats associate_stats;
AssociateUtils::ComputeStats(col, row, NULL, 0, fixed_pitch_,
max_char_wh_ratio, word_res, debug_level_,
&associate_stats);
// For fixed-pitch fonts/languages: if the current combined blob overlaps
// the next blob on the right and it is ok to extend the blob, try extending
// the blob until there is no overlap with the next blob on the right or
// until the width-to-height ratio becomes too large.
if (ok_to_extend) {
while (associate_stats.bad_fixed_pitch_right_gap &&
row + 1 < word_res->ratings->dimension() &&
!associate_stats.bad_fixed_pitch_wh_ratio) {
AssociateUtils::ComputeStats(col, ++row, NULL, 0, fixed_pitch_,
max_char_wh_ratio, word_res, debug_level_,
&associate_stats);
}
}
if (associate_stats.bad_shape) {
if (debug_level_ > 3) {
tprintf("Discarded pain point with a bad shape\n");
}
return false;
}
// Insert the new pain point into pain_points_heap_.
if (pain_points_heaps_[pp_type].size() < max_heap_size_) {
// Compute pain point priority.
float priority;
if (pp_type == LM_PPTYPE_PATH) {
priority = special_priority;
} else {
priority = associate_stats.gap_sum;
}
MatrixCoordPair pain_point(priority, MATRIX_COORD(col, row));
pain_points_heaps_[pp_type].Push(&pain_point);
if (debug_level_) {
tprintf("Added pain point with priority %g\n", priority);
}
return true;
} else {
if (debug_level_) tprintf("Pain points heap is full\n");
return false;
}
}
/**
* Adjusts the pain point coordinates to cope with expansion of the ratings
* matrix due to a split of the blob with the given index.
*/
void LMPainPoints::RemapForSplit(int index) {
for (int i = 0; i < LM_PPTYPE_NUM; ++i) {
GenericVector<MatrixCoordPair>* heap = pain_points_heaps_[i].heap();
for (int j = 0; j < heap->size(); ++j)
(*heap)[j].data.MapForSplit(index);
}
}
} // namespace tesseract