mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-27 20:59:36 +08:00
4d514d5a60
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@878 d0cd1f9f-072b-0410-8dd7-cf729c803f20
240 lines
9.3 KiB
C++
240 lines
9.3 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: lm_state.h
|
|
// Description: Structures and functionality for capturing the state of
|
|
// segmentation search guided by the language model.
|
|
//
|
|
// Author: Rika Antonova
|
|
// Created: Mon Jun 20 11:26:43 PST 2012
|
|
//
|
|
// (C) Copyright 2012, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TESSERACT_WORDREC_LANGUAGE_MODEL_DEFS_H_
|
|
#define TESSERACT_WORDREC_LANGUAGE_MODEL_DEFS_H_
|
|
|
|
#include "associate.h"
|
|
#include "elst.h"
|
|
#include "dawg.h"
|
|
#include "lm_consistency.h"
|
|
#include "matrix.h"
|
|
#include "ratngs.h"
|
|
#include "stopper.h"
|
|
#include "strngs.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Used for expressing various language model flags.
|
|
typedef unsigned char LanguageModelFlagsType;
|
|
|
|
// The following structs are used for storing the state of the language model
|
|
// in the segmentation search graph. In this graph the nodes are BLOB_CHOICEs
|
|
// and the links are the relationships between the underlying blobs (see
|
|
// segsearch.h for a more detailed description).
|
|
// Each of the BLOB_CHOICEs contains LanguageModelState struct, which has
|
|
// a list of N best paths (list of ViterbiStateEntry) explored by the Viterbi
|
|
// search leading up to and including this BLOB_CHOICE.
|
|
// Each ViterbiStateEntry contains information from various components of the
|
|
// language model: dawgs in which the path is found, character ngram model
|
|
// probability of the path, script/chartype/font consistency info, state for
|
|
// language-specific heuristics (e.g. hyphenated and compound words, lower/upper
|
|
// case preferences, etc).
|
|
// Each ViterbiStateEntry also contains the parent pointer, so that the path
|
|
// that it represents (WERD_CHOICE) can be constructed by following these
|
|
// parent pointers.
|
|
|
|
// Struct for storing additional information used by Dawg language model
|
|
// component. It stores the set of active dawgs in which the sequence of
|
|
// letters on a path can be found.
|
|
struct LanguageModelDawgInfo {
|
|
LanguageModelDawgInfo(DawgPositionVector *a, PermuterType pt) : permuter(pt) {
|
|
active_dawgs = new DawgPositionVector(*a);
|
|
}
|
|
~LanguageModelDawgInfo() {
|
|
delete active_dawgs;
|
|
}
|
|
DawgPositionVector *active_dawgs;
|
|
PermuterType permuter;
|
|
};
|
|
|
|
// Struct for storing additional information used by Ngram language model
|
|
// component.
|
|
struct LanguageModelNgramInfo {
|
|
LanguageModelNgramInfo(const char *c, int l, bool p, float nc, float ncc)
|
|
: context(c), context_unichar_step_len(l), pruned(p), ngram_cost(nc),
|
|
ngram_and_classifier_cost(ncc) {}
|
|
STRING context; // context string
|
|
// Length of the context measured by advancing using UNICHAR::utf8_step()
|
|
// (should be at most the order of the character ngram model used).
|
|
int context_unichar_step_len;
|
|
// The paths with pruned set are pruned out from the perspective of the
|
|
// character ngram model. They are explored further because they represent
|
|
// a dictionary match or a top choice. Thus ngram_info is still computed
|
|
// for them in order to calculate the combined cost.
|
|
bool pruned;
|
|
// -ln(P_ngram_model(path))
|
|
float ngram_cost;
|
|
// -[ ln(P_classifier(path)) + scale_factor * ln(P_ngram_model(path)) ]
|
|
float ngram_and_classifier_cost;
|
|
};
|
|
|
|
// Struct for storing the information about a path in the segmentation graph
|
|
// explored by Viterbi search.
|
|
struct ViterbiStateEntry : public ELIST_LINK {
|
|
ViterbiStateEntry(ViterbiStateEntry *pe,
|
|
BLOB_CHOICE *b, float c, float ol,
|
|
const LMConsistencyInfo &ci,
|
|
const AssociateStats &as,
|
|
LanguageModelFlagsType tcf,
|
|
LanguageModelDawgInfo *d,
|
|
LanguageModelNgramInfo *n,
|
|
const char *debug_uch)
|
|
: cost(c), curr_b(b), parent_vse(pe), competing_vse(NULL),
|
|
ratings_sum(b->rating()),
|
|
min_certainty(b->certainty()), adapted(b->IsAdapted()), length(1),
|
|
outline_length(ol), consistency_info(ci), associate_stats(as),
|
|
top_choice_flags(tcf), dawg_info(d), ngram_info(n),
|
|
updated(true) {
|
|
debug_str = (debug_uch == NULL) ? NULL : new STRING();
|
|
if (pe != NULL) {
|
|
ratings_sum += pe->ratings_sum;
|
|
if (pe->min_certainty < min_certainty) {
|
|
min_certainty = pe->min_certainty;
|
|
}
|
|
adapted += pe->adapted;
|
|
length += pe->length;
|
|
outline_length += pe->outline_length;
|
|
if (debug_uch != NULL) *debug_str += *(pe->debug_str);
|
|
}
|
|
if (debug_str != NULL && debug_uch != NULL) *debug_str += debug_uch;
|
|
}
|
|
~ViterbiStateEntry() {
|
|
delete dawg_info;
|
|
delete ngram_info;
|
|
delete debug_str;
|
|
}
|
|
// Comparator function for sorting ViterbiStateEntry_LISTs in
|
|
// non-increasing order of costs.
|
|
static int Compare(const void *e1, const void *e2) {
|
|
const ViterbiStateEntry *ve1 =
|
|
*reinterpret_cast<const ViterbiStateEntry * const *>(e1);
|
|
const ViterbiStateEntry *ve2 =
|
|
*reinterpret_cast<const ViterbiStateEntry * const *>(e2);
|
|
return (ve1->cost < ve2->cost) ? -1 : 1;
|
|
}
|
|
inline bool Consistent() const {
|
|
if (dawg_info != NULL && consistency_info.NumInconsistentCase() == 0) {
|
|
return true;
|
|
}
|
|
return consistency_info.Consistent();
|
|
}
|
|
// Returns true if this VSE has an alphanumeric character as its classifier
|
|
// result.
|
|
bool HasAlnumChoice(const UNICHARSET& unicharset) {
|
|
if (curr_b == NULL) return false;
|
|
UNICHAR_ID unichar_id = curr_b->unichar_id();
|
|
if (unicharset.get_isalpha(unichar_id) ||
|
|
unicharset.get_isdigit(unichar_id))
|
|
return true;
|
|
return false;
|
|
}
|
|
void Print(const char *msg) const;
|
|
|
|
// The cost is an adjusted ratings sum, that is adjusted by all the language
|
|
// model components that use Viterbi search.
|
|
float cost;
|
|
|
|
// Pointers to BLOB_CHOICE and parent ViterbiStateEntry (not owned by this).
|
|
BLOB_CHOICE *curr_b;
|
|
ViterbiStateEntry *parent_vse;
|
|
// Pointer to a case-competing ViterbiStateEntry in the same list that
|
|
// represents a path ending in the same letter of the opposite case.
|
|
ViterbiStateEntry *competing_vse;
|
|
|
|
// Various information about the characters on the path represented
|
|
// by this ViterbiStateEntry.
|
|
float ratings_sum; // sum of ratings of character on the path
|
|
float min_certainty; // minimum certainty on the path
|
|
int adapted; // number of BLOB_CHOICES from adapted templates
|
|
int length; // number of characters on the path
|
|
float outline_length; // length of the outline so far
|
|
LMConsistencyInfo consistency_info; // path consistency info
|
|
AssociateStats associate_stats; // character widths/gaps/seams
|
|
|
|
// Flags for marking the entry as a top choice path with
|
|
// the smallest rating or lower/upper case letters).
|
|
LanguageModelFlagsType top_choice_flags;
|
|
|
|
// Extra information maintained by Dawg laguage model component
|
|
// (owned by ViterbiStateEntry).
|
|
LanguageModelDawgInfo *dawg_info;
|
|
|
|
// Extra information maintained by Ngram laguage model component
|
|
// (owned by ViterbiStateEntry).
|
|
LanguageModelNgramInfo *ngram_info;
|
|
|
|
bool updated; // set to true if the entry has just been created/updated
|
|
// UTF8 string representing the path corresponding to this vse.
|
|
// Populated only in when language_model_debug_level > 0.
|
|
STRING *debug_str;
|
|
};
|
|
|
|
ELISTIZEH(ViterbiStateEntry);
|
|
|
|
// Struct to store information maintained by various language model components.
|
|
struct LanguageModelState {
|
|
LanguageModelState() :
|
|
viterbi_state_entries_prunable_length(0),
|
|
viterbi_state_entries_prunable_max_cost(MAX_FLOAT32),
|
|
viterbi_state_entries_length(0) {}
|
|
~LanguageModelState() {}
|
|
|
|
// Clears the viterbi search state back to its initial conditions.
|
|
void Clear();
|
|
|
|
void Print(const char *msg);
|
|
|
|
// Storage for the Viterbi state.
|
|
ViterbiStateEntry_LIST viterbi_state_entries;
|
|
// Number and max cost of prunable paths in viterbi_state_entries.
|
|
int viterbi_state_entries_prunable_length;
|
|
float viterbi_state_entries_prunable_max_cost;
|
|
// Total number of entries in viterbi_state_entries.
|
|
int viterbi_state_entries_length;
|
|
};
|
|
|
|
// Bundle together all the things pertaining to the best choice/state.
|
|
struct BestChoiceBundle {
|
|
explicit BestChoiceBundle(int matrix_dimension)
|
|
: updated(false), best_vse(NULL) {
|
|
beam.reserve(matrix_dimension);
|
|
for (int i = 0; i < matrix_dimension; ++i)
|
|
beam.push_back(new LanguageModelState);
|
|
}
|
|
~BestChoiceBundle() {}
|
|
|
|
// Flag to indicate whether anything was changed.
|
|
bool updated;
|
|
// Places to try to fix the word suggested by ambiguity checking.
|
|
DANGERR fixpt;
|
|
// The beam. One LanguageModelState containing a list of ViterbiStateEntry per
|
|
// row in the ratings matrix containing all VSEs whose BLOB_CHOICE is
|
|
// somewhere in the corresponding row.
|
|
PointerVector<LanguageModelState> beam;
|
|
// Best ViterbiStateEntry and BLOB_CHOICE.
|
|
ViterbiStateEntry *best_vse;
|
|
};
|
|
|
|
} // namespace tesseract
|
|
|
|
#endif // TESSERACT_WORDREC_LANGUAGE_MODEL_DEFS_H_
|