mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-24 02:59:07 +08:00
4ec9c86226
Signed-off-by: Stefan Weil <sw@weilnetz.de>
123 lines
4.8 KiB
C++
123 lines
4.8 KiB
C++
// (C) Copyright 2017, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "intfeaturemap.h"
|
|
#include "intfeaturespace.h"
|
|
|
|
#include "include_gunit.h"
|
|
|
|
using tesseract::IntFeatureMap;
|
|
using tesseract::IntFeatureSpace;
|
|
|
|
// Random re-quantization to test that they don't have to be easy.
|
|
// WARNING! Change these and change the expected_misses calculation below.
|
|
const int kXBuckets = 16;
|
|
const int kYBuckets = 24;
|
|
const int kThetaBuckets = 13;
|
|
|
|
namespace {
|
|
|
|
class IntFeatureMapTest : public testing::Test {
|
|
public:
|
|
// Expects that the given vector has continguous integer values in the
|
|
// range [start, end).
|
|
void ExpectContiguous(const GenericVector<int>& v, int start, int end) {
|
|
for (int i = start; i < end; ++i) {
|
|
EXPECT_EQ(i, v[i - start]);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Tests the IntFeatureMap and implicitly the IntFeatureSpace underneath.
|
|
TEST_F(IntFeatureMapTest, Exhaustive) {
|
|
IntFeatureSpace space;
|
|
space.Init(kXBuckets, kYBuckets, kThetaBuckets);
|
|
IntFeatureMap map;
|
|
map.Init(space);
|
|
int total_size = kIntFeatureExtent * kIntFeatureExtent * kIntFeatureExtent;
|
|
std::unique_ptr<INT_FEATURE_STRUCT[]> features(
|
|
new INT_FEATURE_STRUCT[total_size]);
|
|
// Fill the features with every value.
|
|
for (int y = 0; y < kIntFeatureExtent; ++y) {
|
|
for (int x = 0; x < kIntFeatureExtent; ++x) {
|
|
for (int theta = 0; theta < kIntFeatureExtent; ++theta) {
|
|
int f_index = (y * kIntFeatureExtent + x) * kIntFeatureExtent + theta;
|
|
features[f_index].X = x;
|
|
features[f_index].Y = y;
|
|
features[f_index].Theta = theta;
|
|
}
|
|
}
|
|
}
|
|
GenericVector<int> index_features;
|
|
map.IndexAndSortFeatures(features.get(), total_size, &index_features);
|
|
EXPECT_EQ(total_size, index_features.size());
|
|
int total_buckets = kXBuckets * kYBuckets * kThetaBuckets;
|
|
GenericVector<int> map_features;
|
|
int misses = map.MapIndexedFeatures(index_features, &map_features);
|
|
EXPECT_EQ(0, misses);
|
|
EXPECT_EQ(total_buckets, map_features.size());
|
|
ExpectContiguous(map_features, 0, total_buckets);
|
|
EXPECT_EQ(total_buckets, map.compact_size());
|
|
EXPECT_EQ(total_buckets, map.sparse_size());
|
|
|
|
// Every offset should be within dx, dy, dtheta of the start point.
|
|
int dx = kIntFeatureExtent / kXBuckets + 1;
|
|
int dy = kIntFeatureExtent / kYBuckets + 1;
|
|
int dtheta = kIntFeatureExtent / kThetaBuckets + 1;
|
|
int bad_offsets = 0;
|
|
for (int index = 0; index < total_buckets; ++index) {
|
|
for (int dir = -tesseract::kNumOffsetMaps; dir <= tesseract::kNumOffsetMaps;
|
|
++dir) {
|
|
int offset_index = map.OffsetFeature(index, dir);
|
|
if (dir == 0) {
|
|
EXPECT_EQ(index, offset_index);
|
|
} else if (offset_index >= 0) {
|
|
INT_FEATURE_STRUCT f = map.InverseIndexFeature(index);
|
|
INT_FEATURE_STRUCT f2 = map.InverseIndexFeature(offset_index);
|
|
EXPECT_TRUE(f.X != f2.X || f.Y != f2.Y || f.Theta != f2.Theta);
|
|
EXPECT_LE(abs(f.X - f2.X), dx);
|
|
EXPECT_LE(abs(f.Y - f2.Y), dy);
|
|
int theta_delta = abs(f.Theta - f2.Theta);
|
|
if (theta_delta > kIntFeatureExtent / 2)
|
|
theta_delta = kIntFeatureExtent - theta_delta;
|
|
EXPECT_LE(theta_delta, dtheta);
|
|
} else {
|
|
++bad_offsets;
|
|
INT_FEATURE_STRUCT f = map.InverseIndexFeature(index);
|
|
}
|
|
}
|
|
}
|
|
EXPECT_LE(bad_offsets, (kXBuckets + kYBuckets) * kThetaBuckets);
|
|
|
|
// To test the mapping further, delete the 1st and last map feature, and
|
|
// test again.
|
|
map.DeleteMapFeature(0);
|
|
map.DeleteMapFeature(total_buckets - 1);
|
|
map.FinalizeMapping(nullptr);
|
|
map.IndexAndSortFeatures(features.get(), total_size, &index_features);
|
|
// Has no effect on index features.
|
|
EXPECT_EQ(total_size, index_features.size());
|
|
misses = map.MapIndexedFeatures(index_features, &map_features);
|
|
int expected_misses = (kIntFeatureExtent / kXBuckets) *
|
|
(kIntFeatureExtent / kYBuckets) *
|
|
(kIntFeatureExtent / kThetaBuckets + 1);
|
|
expected_misses += (kIntFeatureExtent / kXBuckets) *
|
|
(kIntFeatureExtent / kYBuckets + 1) *
|
|
(kIntFeatureExtent / kThetaBuckets);
|
|
EXPECT_EQ(expected_misses, misses);
|
|
EXPECT_EQ(total_buckets - 2, map_features.size());
|
|
ExpectContiguous(map_features, 0, total_buckets - 2);
|
|
EXPECT_EQ(total_buckets - 2, map.compact_size());
|
|
EXPECT_EQ(total_buckets, map.sparse_size());
|
|
}
|
|
|
|
} // namespace.
|