mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-30 23:49:05 +08:00
99edf4ccbd
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@873 d0cd1f9f-072b-0410-8dd7-cf729c803f20
864 lines
35 KiB
C++
864 lines
35 KiB
C++
// Copyright 2010 Google Inc. All Rights Reserved.
|
|
// Author: rays@google.com (Ray Smith)
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "trainingsampleset.h"
|
|
#include "allheaders.h"
|
|
#include "boxread.h"
|
|
#include "fontinfo.h"
|
|
#include "indexmapbidi.h"
|
|
#include "intfeaturedist.h"
|
|
#include "intfeaturemap.h"
|
|
#include "intfeaturespace.h"
|
|
#include "shapetable.h"
|
|
#include "trainingsample.h"
|
|
#include "unicity_table.h"
|
|
|
|
namespace tesseract {
|
|
|
|
const int kTestChar = -1; // 37;
|
|
// Max number of distances to compute the squared way
|
|
const int kSquareLimit = 25;
|
|
// Prime numbers for subsampling distances.
|
|
const int kPrime1 = 17;
|
|
const int kPrime2 = 13;
|
|
// Min samples from which to start discarding outliers.
|
|
const int kMinOutlierSamples = 5;
|
|
|
|
TrainingSampleSet::FontClassInfo::FontClassInfo()
|
|
: num_raw_samples(0), canonical_sample(-1), canonical_dist(0.0f) {
|
|
}
|
|
|
|
// Writes to the given file. Returns false in case of error.
|
|
bool TrainingSampleSet::FontClassInfo::Serialize(FILE* fp) const {
|
|
if (fwrite(&num_raw_samples, sizeof(num_raw_samples), 1, fp) != 1)
|
|
return false;
|
|
if (fwrite(&canonical_sample, sizeof(canonical_sample), 1, fp) != 1)
|
|
return false;
|
|
if (fwrite(&canonical_dist, sizeof(canonical_dist), 1, fp) != 1) return false;
|
|
if (!samples.Serialize(fp)) return false;
|
|
return true;
|
|
}
|
|
// Reads from the given file. Returns false in case of error.
|
|
// If swap is true, assumes a big/little-endian swap is needed.
|
|
bool TrainingSampleSet::FontClassInfo::DeSerialize(bool swap, FILE* fp) {
|
|
if (fread(&num_raw_samples, sizeof(num_raw_samples), 1, fp) != 1)
|
|
return false;
|
|
if (fread(&canonical_sample, sizeof(canonical_sample), 1, fp) != 1)
|
|
return false;
|
|
if (fread(&canonical_dist, sizeof(canonical_dist), 1, fp) != 1) return false;
|
|
if (!samples.DeSerialize(swap, fp)) return false;
|
|
if (swap) {
|
|
ReverseN(&num_raw_samples, sizeof(num_raw_samples));
|
|
ReverseN(&canonical_sample, sizeof(canonical_sample));
|
|
ReverseN(&canonical_dist, sizeof(canonical_dist));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TrainingSampleSet::TrainingSampleSet(const FontInfoTable& font_table)
|
|
: num_raw_samples_(0), unicharset_size_(0),
|
|
font_class_array_(NULL), fontinfo_table_(font_table) {
|
|
}
|
|
|
|
TrainingSampleSet::~TrainingSampleSet() {
|
|
delete font_class_array_;
|
|
}
|
|
|
|
// Writes to the given file. Returns false in case of error.
|
|
bool TrainingSampleSet::Serialize(FILE* fp) const {
|
|
if (!samples_.Serialize(fp)) return false;
|
|
if (!unicharset_.save_to_file(fp)) return false;
|
|
if (!font_id_map_.Serialize(fp)) return false;
|
|
inT8 not_null = font_class_array_ != NULL;
|
|
if (fwrite(¬_null, sizeof(not_null), 1, fp) != 1) return false;
|
|
if (not_null) {
|
|
if (!font_class_array_->SerializeClasses(fp)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Reads from the given file. Returns false in case of error.
|
|
// If swap is true, assumes a big/little-endian swap is needed.
|
|
bool TrainingSampleSet::DeSerialize(bool swap, FILE* fp) {
|
|
if (!samples_.DeSerialize(swap, fp)) return false;
|
|
num_raw_samples_ = samples_.size();
|
|
if (!unicharset_.load_from_file(fp)) return false;
|
|
if (!font_id_map_.DeSerialize(swap, fp)) return false;
|
|
if (font_class_array_ != NULL) {
|
|
delete font_class_array_;
|
|
font_class_array_ = NULL;
|
|
}
|
|
inT8 not_null;
|
|
if (fread(¬_null, sizeof(not_null), 1, fp) != 1) return false;
|
|
if (not_null) {
|
|
FontClassInfo empty;
|
|
font_class_array_ = new GENERIC_2D_ARRAY<FontClassInfo >(1, 1 , empty);
|
|
if (!font_class_array_->DeSerializeClasses(swap, fp)) return false;
|
|
}
|
|
unicharset_size_ = unicharset_.size();
|
|
return true;
|
|
}
|
|
|
|
// Load an initial unicharset, or set one up if the file cannot be read.
|
|
void TrainingSampleSet::LoadUnicharset(const char* filename) {
|
|
if (!unicharset_.load_from_file(filename)) {
|
|
tprintf("Failed to load unicharset from file %s\n"
|
|
"Building unicharset from scratch...\n",
|
|
filename);
|
|
unicharset_.clear();
|
|
// Add special characters as they were removed by the clear.
|
|
UNICHARSET empty;
|
|
unicharset_.AppendOtherUnicharset(empty);
|
|
}
|
|
unicharset_size_ = unicharset_.size();
|
|
}
|
|
|
|
// Adds a character sample to this sample set.
|
|
// If the unichar is not already in the local unicharset, it is added.
|
|
// Returns the unichar_id of the added sample, from the local unicharset.
|
|
int TrainingSampleSet::AddSample(const char* unichar, TrainingSample* sample) {
|
|
if (!unicharset_.contains_unichar(unichar)) {
|
|
unicharset_.unichar_insert(unichar);
|
|
if (unicharset_.size() > MAX_NUM_CLASSES) {
|
|
tprintf("Error: Size of unicharset in TrainingSampleSet::AddSample is "
|
|
"greater than MAX_NUM_CLASSES\n");
|
|
return -1;
|
|
}
|
|
}
|
|
UNICHAR_ID char_id = unicharset_.unichar_to_id(unichar);
|
|
AddSample(char_id, sample);
|
|
return char_id;
|
|
}
|
|
|
|
// Adds a character sample to this sample set with the given unichar_id,
|
|
// which must correspond to the local unicharset (in this).
|
|
void TrainingSampleSet::AddSample(int unichar_id, TrainingSample* sample) {
|
|
sample->set_class_id(unichar_id);
|
|
samples_.push_back(sample);
|
|
num_raw_samples_ = samples_.size();
|
|
unicharset_size_ = unicharset_.size();
|
|
}
|
|
|
|
// Returns the number of samples for the given font,class pair.
|
|
// If randomize is true, returns the number of samples accessible
|
|
// with randomizing on. (Increases the number of samples if small.)
|
|
// OrganizeByFontAndClass must have been already called.
|
|
int TrainingSampleSet::NumClassSamples(int font_id, int class_id,
|
|
bool randomize) const {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
if (font_id < 0 || class_id < 0 ||
|
|
font_id >= font_id_map_.SparseSize() || class_id >= unicharset_size_) {
|
|
// There are no samples because the font or class doesn't exist.
|
|
return 0;
|
|
}
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
if (font_index < 0)
|
|
return 0; // The font has no samples.
|
|
if (randomize)
|
|
return (*font_class_array_)(font_index, class_id).samples.size();
|
|
else
|
|
return (*font_class_array_)(font_index, class_id).num_raw_samples;
|
|
}
|
|
|
|
// Gets a sample by its index.
|
|
const TrainingSample* TrainingSampleSet::GetSample(int index) const {
|
|
return samples_[index];
|
|
}
|
|
|
|
// Gets a sample by its font, class, index.
|
|
// OrganizeByFontAndClass must have been already called.
|
|
const TrainingSample* TrainingSampleSet::GetSample(int font_id, int class_id,
|
|
int index) const {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
if (font_index < 0) return NULL;
|
|
int sample_index = (*font_class_array_)(font_index, class_id).samples[index];
|
|
return samples_[sample_index];
|
|
}
|
|
|
|
// Get a sample by its font, class, index. Does not randomize.
|
|
// OrganizeByFontAndClass must have been already called.
|
|
TrainingSample* TrainingSampleSet::MutableSample(int font_id, int class_id,
|
|
int index) {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
if (font_index < 0) return NULL;
|
|
int sample_index = (*font_class_array_)(font_index, class_id).samples[index];
|
|
return samples_[sample_index];
|
|
}
|
|
|
|
// Returns a string debug representation of the given sample:
|
|
// font, unichar_str, bounding box, page.
|
|
STRING TrainingSampleSet::SampleToString(const TrainingSample& sample) const {
|
|
STRING boxfile_str;
|
|
MakeBoxFileStr(unicharset_.id_to_unichar(sample.class_id()),
|
|
sample.bounding_box(), sample.page_num(), &boxfile_str);
|
|
return STRING(fontinfo_table_.get(sample.font_id()).name) + " " + boxfile_str;
|
|
}
|
|
|
|
// Gets the combined set of features used by all the samples of the given
|
|
// font/class combination.
|
|
const BitVector& TrainingSampleSet::GetCloudFeatures(
|
|
int font_id, int class_id) const {
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
ASSERT_HOST(font_index >= 0);
|
|
return (*font_class_array_)(font_index, class_id).cloud_features;
|
|
}
|
|
// Gets the indexed features of the canonical sample of the given
|
|
// font/class combination.
|
|
const GenericVector<int>& TrainingSampleSet::GetCanonicalFeatures(
|
|
int font_id, int class_id) const {
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
ASSERT_HOST(font_index >= 0);
|
|
return (*font_class_array_)(font_index, class_id).canonical_features;
|
|
}
|
|
|
|
// Returns the distance between the given UniCharAndFonts pair.
|
|
// If matched_fonts, only matching fonts, are considered, unless that yields
|
|
// the empty set.
|
|
// OrganizeByFontAndClass must have been already called.
|
|
float TrainingSampleSet::UnicharDistance(const UnicharAndFonts& uf1,
|
|
const UnicharAndFonts& uf2,
|
|
bool matched_fonts,
|
|
const IntFeatureMap& feature_map) {
|
|
int num_fonts1 = uf1.font_ids.size();
|
|
int c1 = uf1.unichar_id;
|
|
int num_fonts2 = uf2.font_ids.size();
|
|
int c2 = uf2.unichar_id;
|
|
double dist_sum = 0.0;
|
|
int dist_count = 0;
|
|
bool debug = false;
|
|
if (matched_fonts) {
|
|
// Compute distances only where fonts match.
|
|
for (int i = 0; i < num_fonts1; ++i) {
|
|
int f1 = uf1.font_ids[i];
|
|
for (int j = 0; j < num_fonts2; ++j) {
|
|
int f2 = uf2.font_ids[j];
|
|
if (f1 == f2) {
|
|
dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
|
|
++dist_count;
|
|
}
|
|
}
|
|
}
|
|
} else if (num_fonts1 * num_fonts2 <= kSquareLimit) {
|
|
// Small enough sets to compute all the distances.
|
|
for (int i = 0; i < num_fonts1; ++i) {
|
|
int f1 = uf1.font_ids[i];
|
|
for (int j = 0; j < num_fonts2; ++j) {
|
|
int f2 = uf2.font_ids[j];
|
|
dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
|
|
if (debug) {
|
|
tprintf("Cluster dist %d %d %d %d = %g\n",
|
|
f1, c1, f2, c2,
|
|
ClusterDistance(f1, c1, f2, c2, feature_map));
|
|
}
|
|
++dist_count;
|
|
}
|
|
}
|
|
} else {
|
|
// Subsample distances, using the largest set once, and stepping through
|
|
// the smaller set so as to ensure that all the pairs are different.
|
|
int increment = kPrime1 != num_fonts2 ? kPrime1 : kPrime2;
|
|
int index = 0;
|
|
int num_samples = MAX(num_fonts1, num_fonts2);
|
|
for (int i = 0; i < num_samples; ++i, index += increment) {
|
|
int f1 = uf1.font_ids[i % num_fonts1];
|
|
int f2 = uf2.font_ids[index % num_fonts2];
|
|
if (debug) {
|
|
tprintf("Cluster dist %d %d %d %d = %g\n",
|
|
f1, c1, f2, c2, ClusterDistance(f1, c1, f2, c2, feature_map));
|
|
}
|
|
dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
|
|
++dist_count;
|
|
}
|
|
}
|
|
if (dist_count == 0) {
|
|
if (matched_fonts)
|
|
return UnicharDistance(uf1, uf2, false, feature_map);
|
|
return 0.0f;
|
|
}
|
|
return dist_sum / dist_count;
|
|
}
|
|
|
|
// Returns the distance between the given pair of font/class pairs.
|
|
// Finds in cache or computes and caches.
|
|
// OrganizeByFontAndClass must have been already called.
|
|
float TrainingSampleSet::ClusterDistance(int font_id1, int class_id1,
|
|
int font_id2, int class_id2,
|
|
const IntFeatureMap& feature_map) {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_index1 = font_id_map_.SparseToCompact(font_id1);
|
|
int font_index2 = font_id_map_.SparseToCompact(font_id2);
|
|
if (font_index1 < 0 || font_index2 < 0)
|
|
return 0.0f;
|
|
FontClassInfo& fc_info = (*font_class_array_)(font_index1, class_id1);
|
|
if (font_id1 == font_id2) {
|
|
// Special case cache for speed.
|
|
if (fc_info.unichar_distance_cache.size() == 0)
|
|
fc_info.unichar_distance_cache.init_to_size(unicharset_size_, -1.0f);
|
|
if (fc_info.unichar_distance_cache[class_id2] < 0) {
|
|
// Distance has to be calculated.
|
|
float result = ComputeClusterDistance(font_id1, class_id1,
|
|
font_id2, class_id2,
|
|
feature_map);
|
|
fc_info.unichar_distance_cache[class_id2] = result;
|
|
// Copy to the symmetric cache entry.
|
|
FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
|
|
if (fc_info2.unichar_distance_cache.size() == 0)
|
|
fc_info2.unichar_distance_cache.init_to_size(unicharset_size_, -1.0f);
|
|
fc_info2.unichar_distance_cache[class_id1] = result;
|
|
}
|
|
return fc_info.unichar_distance_cache[class_id2];
|
|
} else if (class_id1 == class_id2) {
|
|
// Another special-case cache for equal class-id.
|
|
if (fc_info.font_distance_cache.size() == 0)
|
|
fc_info.font_distance_cache.init_to_size(font_id_map_.CompactSize(),
|
|
-1.0f);
|
|
if (fc_info.font_distance_cache[font_index2] < 0) {
|
|
// Distance has to be calculated.
|
|
float result = ComputeClusterDistance(font_id1, class_id1,
|
|
font_id2, class_id2,
|
|
feature_map);
|
|
fc_info.font_distance_cache[font_index2] = result;
|
|
// Copy to the symmetric cache entry.
|
|
FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
|
|
if (fc_info2.font_distance_cache.size() == 0)
|
|
fc_info2.font_distance_cache.init_to_size(font_id_map_.CompactSize(),
|
|
-1.0f);
|
|
fc_info2.font_distance_cache[font_index1] = result;
|
|
}
|
|
return fc_info.font_distance_cache[font_index2];
|
|
}
|
|
// Both font and class are different. Linear search for class_id2/font_id2
|
|
// in what is a hopefully short list of distances.
|
|
int cache_index = 0;
|
|
while (cache_index < fc_info.distance_cache.size() &&
|
|
(fc_info.distance_cache[cache_index].unichar_id != class_id2 ||
|
|
fc_info.distance_cache[cache_index].font_id != font_id2))
|
|
++cache_index;
|
|
if (cache_index == fc_info.distance_cache.size()) {
|
|
// Distance has to be calculated.
|
|
float result = ComputeClusterDistance(font_id1, class_id1,
|
|
font_id2, class_id2,
|
|
feature_map);
|
|
FontClassDistance fc_dist = { class_id2, font_id2, result };
|
|
fc_info.distance_cache.push_back(fc_dist);
|
|
// Copy to the symmetric cache entry. We know it isn't there already, as
|
|
// we always copy to the symmetric entry.
|
|
FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
|
|
fc_dist.unichar_id = class_id1;
|
|
fc_dist.font_id = font_id1;
|
|
fc_info2.distance_cache.push_back(fc_dist);
|
|
}
|
|
return fc_info.distance_cache[cache_index].distance;
|
|
}
|
|
|
|
// Computes the distance between the given pair of font/class pairs.
|
|
float TrainingSampleSet::ComputeClusterDistance(
|
|
int font_id1, int class_id1, int font_id2, int class_id2,
|
|
const IntFeatureMap& feature_map) const {
|
|
int dist = ReliablySeparable(font_id1, class_id1, font_id2, class_id2,
|
|
feature_map, false);
|
|
dist += ReliablySeparable(font_id2, class_id2, font_id1, class_id1,
|
|
feature_map, false);
|
|
int denominator = GetCanonicalFeatures(font_id1, class_id1).size();
|
|
denominator += GetCanonicalFeatures(font_id2, class_id2).size();
|
|
return static_cast<float>(dist) / denominator;
|
|
}
|
|
|
|
// Helper to add a feature and its near neighbors to the good_features.
|
|
// levels indicates how many times to compute the offset features of what is
|
|
// already there. This is done by iteration rather than recursion.
|
|
static void AddNearFeatures(const IntFeatureMap& feature_map, int f, int levels,
|
|
GenericVector<int>* good_features) {
|
|
int prev_num_features = 0;
|
|
good_features->push_back(f);
|
|
int num_features = 1;
|
|
for (int level = 0; level < levels; ++level) {
|
|
for (int i = prev_num_features; i < num_features; ++i) {
|
|
int feature = (*good_features)[i];
|
|
for (int dir = -kNumOffsetMaps; dir <= kNumOffsetMaps; ++dir) {
|
|
if (dir == 0) continue;
|
|
int f1 = feature_map.OffsetFeature(feature, dir);
|
|
if (f1 >= 0) {
|
|
good_features->push_back(f1);
|
|
}
|
|
}
|
|
}
|
|
prev_num_features = num_features;
|
|
num_features = good_features->size();
|
|
}
|
|
}
|
|
|
|
// Returns the number of canonical features of font/class 2 for which
|
|
// neither the feature nor any of its near neighbors occurs in the cloud
|
|
// of font/class 1. Each such feature is a reliable separation between
|
|
// the classes, ASSUMING that the canonical sample is sufficiently
|
|
// representative that every sample has a feature near that particular
|
|
// feature. To check that this is so on the fly would be prohibitively
|
|
// expensive, but it might be possible to pre-qualify the canonical features
|
|
// to include only those for which this assumption is true.
|
|
// ComputeCanonicalFeatures and ComputeCloudFeatures must have been called
|
|
// first, or the results will be nonsense.
|
|
int TrainingSampleSet::ReliablySeparable(int font_id1, int class_id1,
|
|
int font_id2, int class_id2,
|
|
const IntFeatureMap& feature_map,
|
|
bool thorough) const {
|
|
int result = 0;
|
|
const TrainingSample* sample2 = GetCanonicalSample(font_id2, class_id2);
|
|
if (sample2 == NULL)
|
|
return 0; // There are no canonical features.
|
|
const GenericVector<int>& canonical2 = GetCanonicalFeatures(font_id2,
|
|
class_id2);
|
|
const BitVector& cloud1 = GetCloudFeatures(font_id1, class_id1);
|
|
if (cloud1.size() == 0)
|
|
return canonical2.size(); // There are no cloud features.
|
|
|
|
// Find a canonical2 feature that is not in cloud1.
|
|
for (int f = 0; f < canonical2.size(); ++f) {
|
|
int feature = canonical2[f];
|
|
if (cloud1[feature])
|
|
continue;
|
|
// Gather the near neighbours of f.
|
|
GenericVector<int> good_features;
|
|
AddNearFeatures(feature_map, feature, 1, &good_features);
|
|
// Check that none of the good_features are in the cloud.
|
|
int i;
|
|
for (i = 0; i < good_features.size(); ++i) {
|
|
int good_f = good_features[i];
|
|
if (cloud1[good_f]) {
|
|
break;
|
|
}
|
|
}
|
|
if (i < good_features.size())
|
|
continue; // Found one in the cloud.
|
|
++result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Returns the total index of the requested sample.
|
|
// OrganizeByFontAndClass must have been already called.
|
|
int TrainingSampleSet::GlobalSampleIndex(int font_id, int class_id,
|
|
int index) const {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
if (font_index < 0) return -1;
|
|
return (*font_class_array_)(font_index, class_id).samples[index];
|
|
}
|
|
|
|
// Gets the canonical sample for the given font, class pair.
|
|
// ComputeCanonicalSamples must have been called first.
|
|
const TrainingSample* TrainingSampleSet::GetCanonicalSample(
|
|
int font_id, int class_id) const {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
if (font_index < 0) return NULL;
|
|
int sample_index = (*font_class_array_)(font_index,
|
|
class_id).canonical_sample;
|
|
return sample_index >= 0 ? samples_[sample_index] : NULL;
|
|
}
|
|
|
|
// Gets the max distance for the given canonical sample.
|
|
// ComputeCanonicalSamples must have been called first.
|
|
float TrainingSampleSet::GetCanonicalDist(int font_id, int class_id) const {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
if (font_index < 0) return 0.0f;
|
|
if ((*font_class_array_)(font_index, class_id).canonical_sample >= 0)
|
|
return (*font_class_array_)(font_index, class_id).canonical_dist;
|
|
else
|
|
return 0.0f;
|
|
}
|
|
|
|
// Generates indexed features for all samples with the supplied feature_space.
|
|
void TrainingSampleSet::IndexFeatures(const IntFeatureSpace& feature_space) {
|
|
for (int s = 0; s < samples_.size(); ++s)
|
|
samples_[s]->IndexFeatures(feature_space);
|
|
}
|
|
|
|
// Delete outlier samples with few features that are shared with others.
|
|
// IndexFeatures must have been called already.
|
|
void TrainingSampleSet::DeleteOutliers(const IntFeatureSpace& feature_space,
|
|
bool debug) {
|
|
if (font_class_array_ == NULL)
|
|
OrganizeByFontAndClass();
|
|
Pixa* pixa = NULL;
|
|
if (debug)
|
|
pixa = pixaCreate(0);
|
|
GenericVector<int> feature_counts;
|
|
int fs_size = feature_space.Size();
|
|
int font_size = font_id_map_.CompactSize();
|
|
for (int font_index = 0; font_index < font_size; ++font_index) {
|
|
for (int c = 0; c < unicharset_size_; ++c) {
|
|
// Create a histogram of the features used by all samples of this
|
|
// font/class combination.
|
|
feature_counts.init_to_size(fs_size, 0);
|
|
FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
|
|
int sample_count = fcinfo.samples.size();
|
|
if (sample_count < kMinOutlierSamples)
|
|
continue;
|
|
for (int i = 0; i < sample_count; ++i) {
|
|
int s = fcinfo.samples[i];
|
|
const GenericVector<int>& features = samples_[s]->indexed_features();
|
|
for (int f = 0; f < features.size(); ++f) {
|
|
++feature_counts[features[f]];
|
|
}
|
|
}
|
|
for (int i = 0; i < sample_count; ++i) {
|
|
int s = fcinfo.samples[i];
|
|
const TrainingSample& sample = *samples_[s];
|
|
const GenericVector<int>& features = sample.indexed_features();
|
|
// A feature that has a histogram count of 1 is only used by this
|
|
// sample, making it 'bad'. All others are 'good'.
|
|
int good_features = 0;
|
|
int bad_features = 0;
|
|
for (int f = 0; f < features.size(); ++f) {
|
|
if (feature_counts[features[f]] > 1)
|
|
++good_features;
|
|
else
|
|
++bad_features;
|
|
}
|
|
// If more than 1/3 features are bad, then this is an outlier.
|
|
if (bad_features * 2 > good_features) {
|
|
tprintf("Deleting outlier sample of %s, %d good, %d bad\n",
|
|
SampleToString(sample).string(),
|
|
good_features, bad_features);
|
|
if (debug) {
|
|
pixaAddPix(pixa, sample.RenderToPix(&unicharset_), L_INSERT);
|
|
// Add the previous sample as well, so it is easier to see in
|
|
// the output what is wrong with this sample.
|
|
int t;
|
|
if (i == 0)
|
|
t = fcinfo.samples[1];
|
|
else
|
|
t = fcinfo.samples[i - 1];
|
|
const TrainingSample &csample = *samples_[t];
|
|
pixaAddPix(pixa, csample.RenderToPix(&unicharset_), L_INSERT);
|
|
}
|
|
// Mark the sample for deletion.
|
|
KillSample(samples_[s]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Truly delete all bad samples and renumber everything.
|
|
DeleteDeadSamples();
|
|
if (pixa != NULL) {
|
|
Pix* pix = pixaDisplayTiledInRows(pixa, 1, 2600, 1.0, 0, 10, 10);
|
|
pixaDestroy(&pixa);
|
|
pixWrite("outliers.png", pix, IFF_PNG);
|
|
pixDestroy(&pix);
|
|
}
|
|
}
|
|
|
|
// Marks the given sample index for deletion.
|
|
// Deletion is actually completed by DeleteDeadSamples.
|
|
void TrainingSampleSet::KillSample(TrainingSample* sample) {
|
|
sample->set_sample_index(-1);
|
|
}
|
|
|
|
// Deletes all samples with zero features marked by KillSample.
|
|
void TrainingSampleSet::DeleteDeadSamples() {
|
|
samples_.compact(
|
|
NewPermanentTessCallback(this, &TrainingSampleSet::DeleteableSample));
|
|
num_raw_samples_ = samples_.size();
|
|
// Samples must be re-organized now we have deleted a few.
|
|
}
|
|
|
|
// Callback function returns true if the given sample is to be deleted, due
|
|
// to having a negative classid.
|
|
bool TrainingSampleSet::DeleteableSample(const TrainingSample* sample) {
|
|
return sample == NULL || sample->class_id() < 0;
|
|
}
|
|
|
|
static Pix* DebugSample(const UNICHARSET& unicharset,
|
|
TrainingSample* sample) {
|
|
tprintf("\nOriginal features:\n");
|
|
for (int i = 0; i < sample->num_features(); ++i) {
|
|
sample->features()[i].print();
|
|
}
|
|
if (sample->features_are_mapped()) {
|
|
tprintf("\nMapped features:\n");
|
|
for (int i = 0; i < sample->mapped_features().size(); ++i) {
|
|
tprintf("%d ", sample->mapped_features()[i]);
|
|
}
|
|
tprintf("\n");
|
|
}
|
|
return sample->RenderToPix(&unicharset);
|
|
}
|
|
|
|
// Construct an array to access the samples by font,class pair.
|
|
void TrainingSampleSet::OrganizeByFontAndClass() {
|
|
// Font indexes are sparse, so we used a map to compact them, so we can
|
|
// have an efficient 2-d array of fonts and character classes.
|
|
SetupFontIdMap();
|
|
int compact_font_size = font_id_map_.CompactSize();
|
|
// Get a 2-d array of generic vectors.
|
|
if (font_class_array_ != NULL)
|
|
delete font_class_array_;
|
|
FontClassInfo empty;
|
|
font_class_array_ = new GENERIC_2D_ARRAY<FontClassInfo>(
|
|
compact_font_size, unicharset_size_, empty);
|
|
for (int s = 0; s < samples_.size(); ++s) {
|
|
int font_id = samples_[s]->font_id();
|
|
int class_id = samples_[s]->class_id();
|
|
if (font_id < 0 || font_id >= font_id_map_.SparseSize()) {
|
|
tprintf("Font id = %d/%d, class id = %d/%d on sample %d\n",
|
|
font_id, font_id_map_.SparseSize(), class_id, unicharset_size_,
|
|
s);
|
|
}
|
|
ASSERT_HOST(font_id >= 0 && font_id < font_id_map_.SparseSize());
|
|
ASSERT_HOST(class_id >= 0 && class_id < unicharset_size_);
|
|
int font_index = font_id_map_.SparseToCompact(font_id);
|
|
(*font_class_array_)(font_index, class_id).samples.push_back(s);
|
|
}
|
|
// Set the num_raw_samples member of the FontClassInfo, to set the boundary
|
|
// between the raw samples and the replicated ones.
|
|
for (int f = 0; f < compact_font_size; ++f) {
|
|
for (int c = 0; c < unicharset_size_; ++c)
|
|
(*font_class_array_)(f, c).num_raw_samples =
|
|
(*font_class_array_)(f, c).samples.size();
|
|
}
|
|
// This is the global number of samples and also marks the boundary between
|
|
// real and replicated samples.
|
|
num_raw_samples_ = samples_.size();
|
|
}
|
|
|
|
// Constructs the font_id_map_ which maps real font_ids (sparse) to a compact
|
|
// index for the font_class_array_.
|
|
void TrainingSampleSet::SetupFontIdMap() {
|
|
// Number of samples for each font_id.
|
|
GenericVector<int> font_counts;
|
|
for (int s = 0; s < samples_.size(); ++s) {
|
|
int font_id = samples_[s]->font_id();
|
|
while (font_id >= font_counts.size())
|
|
font_counts.push_back(0);
|
|
++font_counts[font_id];
|
|
}
|
|
font_id_map_.Init(font_counts.size(), false);
|
|
for (int f = 0; f < font_counts.size(); ++f) {
|
|
font_id_map_.SetMap(f, font_counts[f] > 0);
|
|
}
|
|
font_id_map_.Setup();
|
|
}
|
|
|
|
|
|
// Finds the sample for each font, class pair that has least maximum
|
|
// distance to all the other samples of the same font, class.
|
|
// OrganizeByFontAndClass must have been already called.
|
|
void TrainingSampleSet::ComputeCanonicalSamples(const IntFeatureMap& map,
|
|
bool debug) {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
IntFeatureDist f_table;
|
|
if (debug) tprintf("feature table size %d\n", map.sparse_size());
|
|
f_table.Init(&map);
|
|
int worst_s1 = 0;
|
|
int worst_s2 = 0;
|
|
double global_worst_dist = 0.0;
|
|
// Compute distances independently for each font and char index.
|
|
int font_size = font_id_map_.CompactSize();
|
|
for (int font_index = 0; font_index < font_size; ++font_index) {
|
|
int font_id = font_id_map_.CompactToSparse(font_index);
|
|
for (int c = 0; c < unicharset_size_; ++c) {
|
|
int samples_found = 0;
|
|
FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
|
|
if (fcinfo.samples.size() == 0 ||
|
|
(kTestChar >= 0 && c != kTestChar)) {
|
|
fcinfo.canonical_sample = -1;
|
|
fcinfo.canonical_dist = 0.0f;
|
|
if (debug) tprintf("Skipping class %d\n", c);
|
|
continue;
|
|
}
|
|
// The canonical sample will be the one with the min_max_dist, which
|
|
// is the sample with the lowest maximum distance to all other samples.
|
|
double min_max_dist = 2.0;
|
|
// We keep track of the farthest apart pair (max_s1, max_s2) which
|
|
// are max_max_dist apart, so we can see how bad the variability is.
|
|
double max_max_dist = 0.0;
|
|
int max_s1 = 0;
|
|
int max_s2 = 0;
|
|
fcinfo.canonical_sample = fcinfo.samples[0];
|
|
fcinfo.canonical_dist = 0.0f;
|
|
for (int i = 0; i < fcinfo.samples.size(); ++i) {
|
|
int s1 = fcinfo.samples[i];
|
|
const GenericVector<int>& features1 = samples_[s1]->indexed_features();
|
|
f_table.Set(features1, features1.size(), true);
|
|
double max_dist = 0.0;
|
|
// Run the full squared-order search for similar samples. It is still
|
|
// reasonably fast because f_table.FeatureDistance is fast, but we
|
|
// may have to reconsider if we start playing with too many samples
|
|
// of a single char/font.
|
|
for (int j = 0; j < fcinfo.samples.size(); ++j) {
|
|
int s2 = fcinfo.samples[j];
|
|
if (samples_[s2]->class_id() != c ||
|
|
samples_[s2]->font_id() != font_id ||
|
|
s2 == s1)
|
|
continue;
|
|
GenericVector<int> features2 = samples_[s2]->indexed_features();
|
|
double dist = f_table.FeatureDistance(features2);
|
|
if (dist > max_dist) {
|
|
max_dist = dist;
|
|
if (dist > max_max_dist) {
|
|
max_s1 = s1;
|
|
max_s2 = s2;
|
|
}
|
|
}
|
|
}
|
|
// Using Set(..., false) is far faster than re initializing, due to
|
|
// the sparseness of the feature space.
|
|
f_table.Set(features1, features1.size(), false);
|
|
samples_[s1]->set_max_dist(max_dist);
|
|
++samples_found;
|
|
if (max_dist < min_max_dist) {
|
|
fcinfo.canonical_sample = s1;
|
|
fcinfo.canonical_dist = max_dist;
|
|
}
|
|
UpdateRange(max_dist, &min_max_dist, &max_max_dist);
|
|
}
|
|
if (max_max_dist > global_worst_dist) {
|
|
// Keep a record of the worst pair over all characters/fonts too.
|
|
global_worst_dist = max_max_dist;
|
|
worst_s1 = max_s1;
|
|
worst_s2 = max_s2;
|
|
}
|
|
if (debug) {
|
|
tprintf("Found %d samples of class %d=%s, font %d, "
|
|
"dist range [%g, %g], worst pair= %s, %s\n",
|
|
samples_found, c, unicharset_.debug_str(c).string(),
|
|
font_index, min_max_dist, max_max_dist,
|
|
SampleToString(*samples_[max_s1]).string(),
|
|
SampleToString(*samples_[max_s2]).string());
|
|
}
|
|
}
|
|
}
|
|
if (debug) {
|
|
tprintf("Global worst dist = %g, between sample %d and %d\n",
|
|
global_worst_dist, worst_s1, worst_s2);
|
|
Pix* pix1 = DebugSample(unicharset_, samples_[worst_s1]);
|
|
Pix* pix2 = DebugSample(unicharset_, samples_[worst_s2]);
|
|
pixOr(pix1, pix1, pix2);
|
|
pixWrite("worstpair.png", pix1, IFF_PNG);
|
|
pixDestroy(&pix1);
|
|
pixDestroy(&pix2);
|
|
}
|
|
}
|
|
|
|
// Replicates the samples to a minimum frequency defined by
|
|
// 2 * kSampleRandomSize, or for larger counts duplicates all samples.
|
|
// After replication, the replicated samples are perturbed slightly, but
|
|
// in a predictable and repeatable way.
|
|
// Use after OrganizeByFontAndClass().
|
|
void TrainingSampleSet::ReplicateAndRandomizeSamples() {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_size = font_id_map_.CompactSize();
|
|
for (int font_index = 0; font_index < font_size; ++font_index) {
|
|
for (int c = 0; c < unicharset_size_; ++c) {
|
|
FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
|
|
int sample_count = fcinfo.samples.size();
|
|
int min_samples = 2 * MAX(kSampleRandomSize, sample_count);
|
|
if (sample_count > 0 && sample_count < min_samples) {
|
|
int base_count = sample_count;
|
|
for (int base_index = 0; sample_count < min_samples; ++sample_count) {
|
|
int src_index = fcinfo.samples[base_index++];
|
|
if (base_index >= base_count) base_index = 0;
|
|
TrainingSample* sample = samples_[src_index]->RandomizedCopy(
|
|
sample_count % kSampleRandomSize);
|
|
int sample_index = samples_.size();
|
|
sample->set_sample_index(sample_index);
|
|
samples_.push_back(sample);
|
|
fcinfo.samples.push_back(sample_index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Caches the indexed features of the canonical samples.
|
|
// ComputeCanonicalSamples must have been already called.
|
|
// TODO(rays) see note on ReliablySeparable and try restricting the
|
|
// canonical features to those that truly represent all samples.
|
|
void TrainingSampleSet::ComputeCanonicalFeatures() {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_size = font_id_map_.CompactSize();
|
|
for (int font_index = 0; font_index < font_size; ++font_index) {
|
|
int font_id = font_id_map_.CompactToSparse(font_index);
|
|
for (int c = 0; c < unicharset_size_; ++c) {
|
|
int num_samples = NumClassSamples(font_id, c, false);
|
|
if (num_samples == 0)
|
|
continue;
|
|
const TrainingSample* sample = GetCanonicalSample(font_id, c);
|
|
FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
|
|
fcinfo.canonical_features = sample->indexed_features();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Computes the combined set of features used by all the samples of each
|
|
// font/class combination. Use after ReplicateAndRandomizeSamples.
|
|
void TrainingSampleSet::ComputeCloudFeatures(int feature_space_size) {
|
|
ASSERT_HOST(font_class_array_ != NULL);
|
|
int font_size = font_id_map_.CompactSize();
|
|
for (int font_index = 0; font_index < font_size; ++font_index) {
|
|
int font_id = font_id_map_.CompactToSparse(font_index);
|
|
for (int c = 0; c < unicharset_size_; ++c) {
|
|
int num_samples = NumClassSamples(font_id, c, false);
|
|
if (num_samples == 0)
|
|
continue;
|
|
FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
|
|
fcinfo.cloud_features.Init(feature_space_size);
|
|
for (int s = 0; s < num_samples; ++s) {
|
|
const TrainingSample* sample = GetSample(font_id, c, s);
|
|
const GenericVector<int>& sample_features = sample->indexed_features();
|
|
for (int i = 0; i < sample_features.size(); ++i)
|
|
fcinfo.cloud_features.SetBit(sample_features[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds all fonts of the given class to the shape.
|
|
void TrainingSampleSet::AddAllFontsForClass(int class_id, Shape* shape) const {
|
|
for (int f = 0; f < font_id_map_.CompactSize(); ++f) {
|
|
int font_id = font_id_map_.CompactToSparse(f);
|
|
shape->AddToShape(class_id, font_id);
|
|
}
|
|
}
|
|
|
|
// Display the samples with the given indexed feature that also match
|
|
// the given shape.
|
|
void TrainingSampleSet::DisplaySamplesWithFeature(int f_index,
|
|
const Shape& shape,
|
|
const IntFeatureSpace& space,
|
|
ScrollView::Color color,
|
|
ScrollView* window) const {
|
|
for (int s = 0; s < num_raw_samples(); ++s) {
|
|
const TrainingSample* sample = GetSample(s);
|
|
if (shape.ContainsUnichar(sample->class_id())) {
|
|
GenericVector<int> indexed_features;
|
|
space.IndexAndSortFeatures(sample->features(), sample->num_features(),
|
|
&indexed_features);
|
|
for (int f = 0; f < indexed_features.size(); ++f) {
|
|
if (indexed_features[f] == f_index) {
|
|
sample->DisplayFeatures(color, window);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace tesseract.
|