mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-05 00:27:49 +08:00
425d593ebe
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk/trunk@2 d0cd1f9f-072b-0410-8dd7-cf729c803f20
740 lines
22 KiB
C++
740 lines
22 KiB
C++
/* -*-C-*-
|
|
********************************************************************************
|
|
*
|
|
* File: chopper.c (Formerly chopper.c)
|
|
* Description:
|
|
* Author: Mark Seaman, OCR Technology
|
|
* Created: Fri Oct 16 14:37:00 1987
|
|
* Modified: Tue Jul 30 16:18:52 1991 (Mark Seaman) marks@hpgrlt
|
|
* Language: C
|
|
* Package: N/A
|
|
* Status: Reusable Software Component
|
|
*
|
|
* (c) Copyright 1987, Hewlett-Packard Company.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/*----------------------------------------------------------------------
|
|
I n c l u d e s
|
|
----------------------------------------------------------------------*/
|
|
#include "chopper.h"
|
|
#include "wordclass.h"
|
|
#include "makechop.h"
|
|
#include "associate.h"
|
|
#include "metrics.h"
|
|
#include "tordvars.h"
|
|
#include "stopper.h"
|
|
#include "callcpp.h"
|
|
#include "structures.h"
|
|
#include "findseam.h"
|
|
#include "render.h"
|
|
#include "seam.h"
|
|
#include "const.h"
|
|
#include "freelist.h"
|
|
#include "pieces.h"
|
|
#include "permute.h"
|
|
//#include "tessvars.h"
|
|
|
|
#include <math.h>
|
|
|
|
extern int blob_skip;
|
|
INT_VAR (repair_unchopped_blobs, 1, "Fix blobs that aren't chopped");
|
|
|
|
//?extern int tessedit_dangambigs_chop;
|
|
double_VAR (tessedit_certainty_threshold, -2.25, "Good blob limit");
|
|
|
|
/*----------------------------------------------------------------------
|
|
M a c r o s
|
|
----------------------------------------------------------------------*/
|
|
/**********************************************************************
|
|
* bounds_inside
|
|
*
|
|
* Check to see if the bounding box of one thing is inside the
|
|
* bounding box of another.
|
|
**********************************************************************/
|
|
#define bounds_inside(inner_tl,inner_br,outer_tl,outer_br) \
|
|
((inner_tl.x >= outer_tl.x) && \
|
|
(inner_tl.y <= outer_tl.y) && \
|
|
(inner_br.x <= outer_br.x) && \
|
|
(inner_br.y >= outer_br.y)) \
|
|
|
|
/**********************************************************************
|
|
* set_null_choice
|
|
*
|
|
* Set the fields in this choice to be defaulted bad initial values.
|
|
**********************************************************************/
|
|
#define set_null_choice(choice) \
|
|
(class_string (choice) = NULL, \
|
|
class_probability (choice) = MAX_FLOAT32, \
|
|
class_certainty (choice) = -MAX_FLOAT32) \
|
|
|
|
/*----------------------------------------------------------------------
|
|
F u n c t i o n s
|
|
----------------------------------------------------------------------*/
|
|
/**********************************************************************
|
|
* preserve_outline_tree
|
|
*
|
|
* Copy the list of outlines.
|
|
**********************************************************************/
|
|
void preserve_outline(EDGEPT *start) {
|
|
EDGEPT *srcpt;
|
|
|
|
if (start == NULL)
|
|
return;
|
|
srcpt = start;
|
|
do {
|
|
srcpt->flags[1] = 1;
|
|
srcpt = srcpt->next;
|
|
}
|
|
while (srcpt != start);
|
|
srcpt->flags[1] = 2;
|
|
}
|
|
|
|
|
|
/**************************************************************************/
|
|
void preserve_outline_tree(TESSLINE *srcline) {
|
|
TESSLINE *outline;
|
|
|
|
for (outline = srcline; outline != NULL; outline = outline->next) {
|
|
preserve_outline (outline->loop);
|
|
}
|
|
if (srcline->child != NULL)
|
|
preserve_outline_tree (srcline->child);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* restore_outline_tree
|
|
*
|
|
* Copy the list of outlines.
|
|
**********************************************************************/
|
|
EDGEPT *restore_outline(EDGEPT *start) {
|
|
EDGEPT *srcpt;
|
|
EDGEPT *real_start;
|
|
EDGEPT *deadpt;
|
|
|
|
if (start == NULL)
|
|
return NULL;
|
|
srcpt = start;
|
|
do {
|
|
if (srcpt->flags[1] == 2)
|
|
break;
|
|
srcpt = srcpt->next;
|
|
}
|
|
while (srcpt != start);
|
|
real_start = srcpt;
|
|
do {
|
|
if (srcpt->flags[1] == 0) {
|
|
deadpt = srcpt;
|
|
srcpt = srcpt->next;
|
|
srcpt->prev = deadpt->prev;
|
|
deadpt->prev->next = srcpt;
|
|
deadpt->prev->vec.x = srcpt->pos.x - deadpt->prev->pos.x;
|
|
deadpt->prev->vec.y = srcpt->pos.y - deadpt->prev->pos.y;
|
|
oldedgept(deadpt);
|
|
}
|
|
else
|
|
srcpt = srcpt->next;
|
|
}
|
|
while (srcpt != real_start);
|
|
return real_start;
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
void restore_outline_tree(TESSLINE *srcline) {
|
|
TESSLINE *outline;
|
|
|
|
for (outline = srcline; outline != NULL; outline = outline->next) {
|
|
outline->loop = restore_outline (outline->loop);
|
|
outline->start = outline->loop->pos;
|
|
}
|
|
if (srcline->child != NULL)
|
|
restore_outline_tree (srcline->child);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* attempt_blob_chop
|
|
*
|
|
* Try to split the this blob after this one. Check to make sure that
|
|
* it was successful.
|
|
**********************************************************************/
|
|
SEAM *attempt_blob_chop(TWERD *word, INT32 blob_number, SEAMS seam_list) {
|
|
TBLOB *blob;
|
|
TBLOB *other_blob;
|
|
SEAM *seam;
|
|
TBLOB *last_blob;
|
|
TBLOB *next_blob;
|
|
INT16 x;
|
|
|
|
if (first_pass)
|
|
chops_attempted1++;
|
|
else
|
|
chops_attempted2++;
|
|
|
|
last_blob = NULL;
|
|
blob = word->blobs;
|
|
for (x = 0; x < blob_number; x++) {
|
|
last_blob = blob;
|
|
blob = blob->next;
|
|
}
|
|
next_blob = blob->next;
|
|
|
|
if (repair_unchopped_blobs)
|
|
preserve_outline_tree (blob->outlines);
|
|
other_blob = newblob (); /* Make new blob */
|
|
other_blob->next = blob->next;
|
|
other_blob->outlines = NULL;
|
|
blob->next = other_blob;
|
|
|
|
seam = pick_good_seam (blob);
|
|
if (chop_debug) {
|
|
if (seam != NULL) {
|
|
print_seam ("Good seam picked=", seam);
|
|
}
|
|
else
|
|
cprintf ("\n** no seam picked *** \n");
|
|
}
|
|
if (seam) {
|
|
apply_seam(blob, other_blob, seam);
|
|
}
|
|
|
|
if ((seam == NULL) ||
|
|
(blob->outlines == NULL) ||
|
|
(other_blob->outlines == NULL) ||
|
|
total_containment (blob, other_blob) ||
|
|
check_blob (other_blob) ||
|
|
!(check_seam_order (blob, seam) &&
|
|
check_seam_order (other_blob, seam)) ||
|
|
any_shared_split_points (seam_list, seam) ||
|
|
!test_insert_seam(seam_list, blob_number, blob, word->blobs)) {
|
|
|
|
blob->next = next_blob;
|
|
if (seam) {
|
|
undo_seam(blob, other_blob, seam);
|
|
delete_seam(seam);
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (chop_debug) {
|
|
display_blob(blob, Red);
|
|
cprintf ("\n** seam being removed ** \n");
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
oldblob(other_blob);
|
|
}
|
|
|
|
if (repair_unchopped_blobs)
|
|
restore_outline_tree (blob->outlines);
|
|
return (NULL);
|
|
}
|
|
return (seam);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* any_shared_split_points
|
|
*
|
|
* Return true if any of the splits share a point with this one.
|
|
**********************************************************************/
|
|
int any_shared_split_points(SEAMS seam_list, SEAM *seam) {
|
|
int length;
|
|
int index;
|
|
|
|
length = array_count (seam_list);
|
|
for (index = 0; index < length; index++)
|
|
if (shared_split_points ((SEAM *) array_value (seam_list, index), seam))
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* check_blob
|
|
*
|
|
* Return true if blob has a non whole outline.
|
|
**********************************************************************/
|
|
int check_blob(TBLOB *blob) {
|
|
TESSLINE *outline;
|
|
EDGEPT *edgept;
|
|
|
|
for (outline = blob->outlines; outline != NULL; outline = outline->next) {
|
|
edgept = outline->loop;
|
|
do {
|
|
if (edgept == NULL)
|
|
break;
|
|
edgept = edgept->next;
|
|
}
|
|
while (edgept != outline->loop);
|
|
if (edgept == NULL)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* improve_one_blob
|
|
*
|
|
* Start with the current word of blobs and its classification. Find
|
|
* the worst blobs and try to divide it up to improve the ratings.
|
|
*********************************************************************/
|
|
CHOICES_LIST improve_one_blob(TWERD *word,
|
|
CHOICES_LIST char_choices,
|
|
int fx,
|
|
INT32 *blob_number,
|
|
SEAMS *seam_list,
|
|
DANGERR *fixpt,
|
|
STATE *this_state,
|
|
STATE *correct_state,
|
|
INT32 pass) {
|
|
TBLOB *pblob;
|
|
TBLOB *blob;
|
|
INT16 x = 0;
|
|
float rating_ceiling = MAX_FLOAT32;
|
|
CHOICES answer;
|
|
SEAM *seam;
|
|
|
|
do {
|
|
*blob_number = select_blob_to_split (char_choices, rating_ceiling);
|
|
if (*blob_number == -1)
|
|
return (NULL);
|
|
|
|
seam = attempt_blob_chop (word, *blob_number, *seam_list);
|
|
if (seam != NULL)
|
|
break;
|
|
/* Must split null blobs */
|
|
answer = (CHOICES) array_value (char_choices, *blob_number);
|
|
if (answer == NIL)
|
|
return (NULL); /* Try different blob */
|
|
rating_ceiling = best_probability (answer);
|
|
}
|
|
while (!blob_skip);
|
|
/* Split OK */
|
|
for (blob = word->blobs, pblob = NULL; x < *blob_number; x++) {
|
|
pblob = blob;
|
|
blob = blob->next;
|
|
}
|
|
|
|
*seam_list =
|
|
insert_seam (*seam_list, *blob_number, seam, blob, word->blobs);
|
|
|
|
free_choices ((CHOICES) array_value (char_choices, *blob_number));
|
|
|
|
answer =
|
|
classify_blob (pblob, blob, blob->next, NULL, fx, "improve 1:", Red,
|
|
this_state, correct_state, pass, *blob_number);
|
|
char_choices = array_insert (char_choices, *blob_number, answer);
|
|
|
|
answer =
|
|
classify_blob (blob, blob->next, blob->next->next, NULL, fx, "improve 2:",
|
|
Yellow, this_state, correct_state, pass, *blob_number + 1);
|
|
array_value (char_choices, *blob_number + 1) = (char *) answer;
|
|
|
|
return (char_choices);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* check_seam_order
|
|
*
|
|
* Make sure that each of the splits in this seam match to outlines
|
|
* in this blob. If any of the splits could not correspond to this
|
|
* blob then there is a problem (and FALSE should be returned to the
|
|
* caller).
|
|
**********************************************************************/
|
|
INT16 check_seam_order(TBLOB *blob, SEAM *seam) {
|
|
TESSLINE *outline;
|
|
TESSLINE *last_outline;
|
|
INT8 found_em[3];
|
|
|
|
if (seam->split1 == NULL || seam->split1 == NULL || blob == NULL)
|
|
return (TRUE);
|
|
|
|
found_em[0] = found_em[1] = found_em[2] = FALSE;
|
|
|
|
for (outline = blob->outlines; outline; outline = outline->next) {
|
|
if (!found_em[0] &&
|
|
((seam->split1 == NULL) ||
|
|
is_split_outline (outline, seam->split1))) {
|
|
found_em[0] = TRUE;
|
|
}
|
|
if (!found_em[1] &&
|
|
((seam->split2 == NULL) ||
|
|
is_split_outline (outline, seam->split2))) {
|
|
found_em[1] = TRUE;
|
|
}
|
|
if (!found_em[2] &&
|
|
((seam->split3 == NULL) ||
|
|
is_split_outline (outline, seam->split3))) {
|
|
found_em[2] = TRUE;
|
|
}
|
|
last_outline = outline;
|
|
}
|
|
|
|
if (!found_em[0] || !found_em[1] || !found_em[2])
|
|
return (FALSE);
|
|
else
|
|
return (TRUE);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* chop_word_main
|
|
*
|
|
* Classify the blobs in this word and permute the results. Find the
|
|
* worst blob in the word and chop it up. Continue this process until
|
|
* a good answer has been found or all the blobs have been chopped up
|
|
* enough. Return the word level ratings.
|
|
**********************************************************************/
|
|
CHOICES_LIST chop_word_main(register TWERD *word,
|
|
int fx,
|
|
A_CHOICE *best_choice,
|
|
A_CHOICE *raw_choice,
|
|
BOOL8 tester,
|
|
BOOL8 trainer) {
|
|
TBLOB *pblob;
|
|
TBLOB *blob;
|
|
CHOICES_LIST char_choices;
|
|
int index;
|
|
int did_chopping;
|
|
float rating_limit = 1000.0;
|
|
STATE state;
|
|
SEAMS seam_list = NULL;
|
|
CHOICES match_result;
|
|
MATRIX ratings = NULL;
|
|
DANGERR fixpt; /*dangerous ambig */
|
|
INT32 state_count; //no of states
|
|
INT32 bit_count; //no of bits
|
|
static STATE best_state;
|
|
static STATE chop_states[64]; //in between states
|
|
|
|
state_count = 0;
|
|
set_null_choice(best_choice);
|
|
set_null_choice(raw_choice);
|
|
|
|
char_choices = new_choice_list ();
|
|
|
|
did_chopping = 0;
|
|
for (blob = word->blobs, pblob = NULL, index = 0; blob != NULL;
|
|
blob = blob->next, index++) {
|
|
match_result =
|
|
(CHOICES) classify_blob (pblob, blob, blob->next, NULL, fx,
|
|
"chop_word:", Green, &chop_states[0],
|
|
&best_state, matcher_pass, index);
|
|
char_choices = array_push (char_choices, match_result);
|
|
pblob = blob;
|
|
}
|
|
bit_count = index - 1;
|
|
permute_characters(char_choices, rating_limit, best_choice, raw_choice);
|
|
|
|
set_n_ones (&state, array_count (char_choices) - 1);
|
|
if (matcher_fp != NULL) {
|
|
if (matcher_pass == 0) {
|
|
bits_in_states = bit_count;
|
|
chop_states[state_count] = state;
|
|
}
|
|
state_count++;
|
|
}
|
|
|
|
if (!AcceptableChoice (char_choices, best_choice, raw_choice, &fixpt)
|
|
|| (tester || trainer)
|
|
&& strcmp (word->correct, class_string (best_choice))) {
|
|
did_chopping = 1;
|
|
if (first_pass)
|
|
words_chopped1++;
|
|
else
|
|
words_chopped2++;
|
|
|
|
seam_list = start_seam_list (word->blobs);
|
|
|
|
if (chop_enable)
|
|
improve_by_chopping(word,
|
|
&char_choices,
|
|
fx,
|
|
&state,
|
|
best_choice,
|
|
raw_choice,
|
|
&seam_list,
|
|
&fixpt,
|
|
chop_states,
|
|
&state_count,
|
|
&best_state,
|
|
matcher_pass);
|
|
|
|
if (chop_debug)
|
|
print_seams ("Final seam list:", seam_list);
|
|
|
|
if (enable_assoc &&
|
|
!AcceptableChoice (char_choices, best_choice, raw_choice, NULL)
|
|
|| (tester || trainer)
|
|
&& strcmp (word->correct, class_string (best_choice))) {
|
|
ratings = word_associator (word->blobs, seam_list, &state, fx,
|
|
best_choice, raw_choice, word->correct,
|
|
/*0, */ &fixpt,
|
|
&best_state, matcher_pass);
|
|
}
|
|
bits_in_states = bit_count + state_count - 1;
|
|
|
|
}
|
|
if (ratings != NULL)
|
|
free_matrix(ratings);
|
|
if (did_chopping || tester || trainer)
|
|
char_choices = rebuild_current_state (word->blobs, seam_list, &state,
|
|
char_choices, fx);
|
|
if (seam_list != NULL)
|
|
free_seam_list(seam_list);
|
|
if (matcher_fp != NULL) {
|
|
best_state = state;
|
|
}
|
|
FilterWordChoices();
|
|
return char_choices;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* improve_by_chopping
|
|
*
|
|
* Start with the current word of blobs and its classification. Find
|
|
* the worst blobs and try to divide them up to improve the ratings.
|
|
* As long as ratings are produced by the new blob splitting. When
|
|
* all the splitting has been accomplished all the ratings memory is
|
|
* reclaimed.
|
|
**********************************************************************/
|
|
void improve_by_chopping(register TWERD *word,
|
|
CHOICES_LIST *char_choices,
|
|
int fx,
|
|
STATE *best_state,
|
|
A_CHOICE *best_choice,
|
|
A_CHOICE *raw_choice,
|
|
SEAMS *seam_list,
|
|
DANGERR *fixpt,
|
|
STATE *chop_states,
|
|
INT32 *state_count,
|
|
STATE *correct_state,
|
|
INT32 pass) {
|
|
INT32 blob_number;
|
|
INT32 index; //to states
|
|
CHOICES_LIST choices = *char_choices;
|
|
float old_best;
|
|
int fixpt_valid = 1;
|
|
static INT32 old_count; //from pass1
|
|
|
|
do {
|
|
/* Improvement loop */
|
|
if (!fixpt_valid)
|
|
fixpt->index = -1;
|
|
old_best = class_probability (best_choice);
|
|
choices = improve_one_blob (word, *char_choices, fx,
|
|
&blob_number, seam_list, fixpt,
|
|
chop_states + *state_count, correct_state,
|
|
pass);
|
|
if (choices != NULL) {
|
|
LogNewSplit(blob_number);
|
|
permute_characters (choices,
|
|
class_probability (best_choice),
|
|
best_choice, raw_choice);
|
|
*char_choices = choices;
|
|
|
|
if (old_best > class_probability (best_choice)) {
|
|
set_n_ones (best_state, array_count (*char_choices) - 1);
|
|
fixpt_valid = 1;
|
|
}
|
|
else {
|
|
insert_new_chunk (best_state, blob_number,
|
|
array_count (*char_choices) - 2);
|
|
fixpt_valid = 0;
|
|
}
|
|
if (*state_count > 0) {
|
|
if (pass == 0) {
|
|
for (index = 0; index < *state_count; index++)
|
|
insert_new_chunk (&chop_states[index], blob_number,
|
|
array_count (*char_choices) - 2);
|
|
set_n_ones (&chop_states[index],
|
|
array_count (*char_choices) - 1);
|
|
}
|
|
(*state_count)++;
|
|
}
|
|
|
|
if (chop_debug)
|
|
print_state ("best state = ",
|
|
best_state, count_blobs (word->blobs) - 1);
|
|
if (first_pass)
|
|
chops_performed1++;
|
|
else
|
|
chops_performed2++;
|
|
|
|
}
|
|
}
|
|
while (choices &&
|
|
!AcceptableChoice (*char_choices, best_choice, raw_choice, fixpt) &&
|
|
!blob_skip && array_count (*char_choices) < MAX_NUM_CHUNKS);
|
|
if (pass == 0)
|
|
old_count = *state_count;
|
|
else {
|
|
if (old_count != *state_count)
|
|
fprintf (matcher_fp,
|
|
"Mis-matched state counts, " INT32FORMAT " pass1, "
|
|
INT32FORMAT " pass2\n", old_count, *state_count);
|
|
}
|
|
if (!fixpt_valid)
|
|
fixpt->index = -1;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* select_blob_to_split
|
|
*
|
|
* These are the results of the last classification. Find a likely
|
|
* place to apply splits.
|
|
**********************************************************************/
|
|
INT16 select_blob_to_split(CHOICES_LIST char_choices, float rating_ceiling) {
|
|
CHOICES this_choice;
|
|
int x;
|
|
float worst = -MAX_FLOAT32;
|
|
int worst_index = -1;
|
|
|
|
if (chop_debug)
|
|
if (rating_ceiling < MAX_FLOAT32)
|
|
cprintf ("rating_ceiling = %8.4f\n", rating_ceiling);
|
|
else
|
|
cprintf ("rating_ceiling = No Limit\n");
|
|
|
|
for_each_choice(char_choices, x) {
|
|
this_choice = (CHOICES) array_value (char_choices, x);
|
|
if (this_choice == NIL) {
|
|
return (x);
|
|
}
|
|
else {
|
|
if (best_probability (this_choice) > worst &&
|
|
best_probability (this_choice) < rating_ceiling &&
|
|
best_certainty (this_choice) < tessedit_certainty_threshold) {
|
|
worst_index = x;
|
|
worst = best_probability (this_choice);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (chop_debug)
|
|
cprintf ("blob_number = %4d\n", worst_index);
|
|
|
|
return (worst_index);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* start_seam_list
|
|
*
|
|
* Initialize a list of seams that match the original number of blobs
|
|
* present in the starting segmentation. Each of the seams created
|
|
* by this routine have location information only.
|
|
**********************************************************************/
|
|
SEAMS start_seam_list(TBLOB *blobs) {
|
|
TBLOB *blob;
|
|
SEAMS seam_list;
|
|
TPOINT topleft;
|
|
TPOINT botright;
|
|
int location;
|
|
/* Seam slot per char */
|
|
seam_list = new_seam_list ();
|
|
|
|
for (blob = blobs; blob->next != NULL; blob = blob->next) {
|
|
|
|
blob_bounding_box(blob, &topleft, &botright);
|
|
location = botright.x;
|
|
blob_bounding_box (blob->next, &topleft, &botright);
|
|
location += topleft.x;
|
|
location /= 2;
|
|
|
|
seam_list = add_seam (seam_list,
|
|
new_seam (0.0, location, NULL, NULL, NULL));
|
|
}
|
|
|
|
return (seam_list);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* total_containment
|
|
*
|
|
* Check to see if one of these outlines is totally contained within
|
|
* the bounding box of the other.
|
|
**********************************************************************/
|
|
INT16 total_containment(TBLOB *blob1, TBLOB *blob2) {
|
|
TPOINT topleft1;
|
|
TPOINT botright1;
|
|
TPOINT topleft2;
|
|
TPOINT botright2;
|
|
|
|
blob_bounding_box(blob1, &topleft1, &botright1);
|
|
blob_bounding_box(blob2, &topleft2, &botright2);
|
|
|
|
return (bounds_inside (topleft1, botright1, topleft2, botright2) ||
|
|
bounds_inside (topleft2, botright2, topleft1, botright1));
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* word_associator
|
|
*
|
|
* Reassociate and classify the blobs in a word. Continue this process
|
|
* until a good answer is found or all the possibilities have been tried.
|
|
**********************************************************************/
|
|
MATRIX word_associator(TBLOB *blobs,
|
|
SEAMS seams,
|
|
STATE *state,
|
|
int fxid,
|
|
A_CHOICE *best_choice,
|
|
A_CHOICE *raw_choice,
|
|
char *correct,
|
|
DANGERR *fixpt,
|
|
STATE *best_state,
|
|
INT32 pass) {
|
|
CHUNKS_RECORD chunks_record;
|
|
BLOB_WEIGHTS blob_weights;
|
|
int x;
|
|
int num_chunks;
|
|
A_CHOICE *this_choice;
|
|
|
|
num_chunks = array_count (seams) + 1;
|
|
|
|
chunks_record.chunks = blobs;
|
|
chunks_record.splits = seams;
|
|
chunks_record.ratings = record_piece_ratings (blobs);
|
|
chunks_record.char_widths = blobs_widths (blobs);
|
|
chunks_record.chunk_widths = blobs_widths (blobs);
|
|
chunks_record.fx = fxid;
|
|
/* Save chunk weights */
|
|
for (x = 0; x < num_chunks; x++) {
|
|
this_choice =
|
|
(A_CHOICE *) first (matrix_get (chunks_record.ratings, x, x));
|
|
blob_weights[x] = -(INT16) (10 * class_probability (this_choice) /
|
|
class_certainty (this_choice));
|
|
}
|
|
chunks_record.weights = blob_weights;
|
|
|
|
if (chop_debug)
|
|
print_matrix (chunks_record.ratings);
|
|
best_first_search(&chunks_record,
|
|
best_choice,
|
|
raw_choice,
|
|
state,
|
|
fixpt,
|
|
best_state,
|
|
pass);
|
|
|
|
free_widths (chunks_record.chunk_widths);
|
|
free_widths (chunks_record.char_widths);
|
|
return chunks_record.ratings;
|
|
}
|