mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-05 02:47:00 +08:00
d8d9b390d1
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@961 d0cd1f9f-072b-0410-8dd7-cf729c803f20
72 lines
2.4 KiB
C++
72 lines
2.4 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: par_control.cpp
|
|
// Description: Control code for parallel implementation.
|
|
// Author: Ray Smith
|
|
// Created: Mon Nov 04 13:23:15 PST 2013
|
|
//
|
|
// (C) Copyright 2013, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "tesseractclass.h"
|
|
|
|
namespace tesseract {
|
|
|
|
struct BlobData {
|
|
BlobData() : blob(NULL), choices(NULL) {}
|
|
BlobData(int index, Tesseract* tess, const WERD_RES& word)
|
|
: blob(word.chopped_word->blobs[index]),
|
|
tesseract(tess),
|
|
choices(&(*word.ratings)(index, index)) {}
|
|
|
|
TBLOB* blob;
|
|
Tesseract* tesseract;
|
|
BLOB_CHOICE_LIST** choices;
|
|
};
|
|
|
|
void Tesseract::PrerecAllWordsPar(const GenericVector<WordData>& words) {
|
|
// Prepare all the blobs.
|
|
GenericVector<BlobData> blobs;
|
|
for (int w = 0; w < words.size(); ++w) {
|
|
if (words[w].word->ratings != NULL &&
|
|
words[w].word->ratings->get(0, 0) == NULL) {
|
|
for (int b = 0; b < words[w].word->chopped_word->NumBlobs(); ++b) {
|
|
blobs.push_back(BlobData(b, this, *words[w].word));
|
|
}
|
|
for (int s = 0; s < words[w].lang_words.size(); ++s) {
|
|
const WERD_RES& word = words[w].lang_words[s];
|
|
for (int b = 0; b < word.chopped_word->NumBlobs(); ++b) {
|
|
blobs.push_back(BlobData(b, sub_langs_[s], word));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Pre-classify all the blobs.
|
|
if (tessedit_parallelize > 1) {
|
|
#pragma omp parallel for num_threads(10)
|
|
for (int b = 0; b < blobs.size(); ++b) {
|
|
*blobs[b].choices =
|
|
blobs[b].tesseract->classify_blob(blobs[b].blob, "par", White, NULL);
|
|
}
|
|
} else {
|
|
// TODO(AMD) parallelize this.
|
|
for (int b = 0; b < blobs.size(); ++b) {
|
|
*blobs[b].choices =
|
|
blobs[b].tesseract->classify_blob(blobs[b].blob, "par", White, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace tesseract.
|
|
|
|
|