mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-25 09:19:15 +08:00
e7794c0c72
Signed-off-by: Stefan Weil <sw@weilnetz.de>
142 lines
4.9 KiB
C++
142 lines
4.9 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: dotproductsse.cpp
|
|
// Description: Architecture-specific dot-product function.
|
|
// Author: Ray Smith
|
|
// Created: Wed Jul 22 10:57:45 PDT 2015
|
|
//
|
|
// (C) Copyright 2015, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#if !defined(__SSE4_1__)
|
|
// This code can't compile with "-msse4.1", so use dummy stubs.
|
|
|
|
#include "dotproductsse.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
namespace tesseract {
|
|
double DotProductSSE(const double* u, const double* v, int n) {
|
|
fprintf(stderr, "DotProductSSE can't be used on Android\n");
|
|
abort();
|
|
}
|
|
int32_t IntDotProductSSE(const int8_t* u, const int8_t* v, int n) {
|
|
fprintf(stderr, "IntDotProductSSE can't be used on Android\n");
|
|
abort();
|
|
}
|
|
} // namespace tesseract
|
|
|
|
#else // !defined(__SSE4_1__)
|
|
// Non-Android code here
|
|
|
|
#include <emmintrin.h>
|
|
#include <smmintrin.h>
|
|
#include <stdint.h>
|
|
#include "dotproductsse.h"
|
|
#include "host.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Computes and returns the dot product of the n-vectors u and v.
|
|
// Uses Intel SSE intrinsics to access the SIMD instruction set.
|
|
double DotProductSSE(const double* u, const double* v, int n) {
|
|
int max_offset = n - 2;
|
|
int offset = 0;
|
|
// Accumulate a set of 2 sums in sum, by loading pairs of 2 values from u and
|
|
// v, and multiplying them together in parallel.
|
|
__m128d sum = _mm_setzero_pd();
|
|
if (offset <= max_offset) {
|
|
offset = 2;
|
|
// Aligned load is reputedly faster but requires 16 byte aligned input.
|
|
if ((reinterpret_cast<const uintptr_t>(u) & 15) == 0 &&
|
|
(reinterpret_cast<const uintptr_t>(v) & 15) == 0) {
|
|
// Use aligned load.
|
|
sum = _mm_load_pd(u);
|
|
__m128d floats2 = _mm_load_pd(v);
|
|
// Multiply.
|
|
sum = _mm_mul_pd(sum, floats2);
|
|
while (offset <= max_offset) {
|
|
__m128d floats1 = _mm_load_pd(u + offset);
|
|
floats2 = _mm_load_pd(v + offset);
|
|
offset += 2;
|
|
floats1 = _mm_mul_pd(floats1, floats2);
|
|
sum = _mm_add_pd(sum, floats1);
|
|
}
|
|
} else {
|
|
// Use unaligned load.
|
|
sum = _mm_loadu_pd(u);
|
|
__m128d floats2 = _mm_loadu_pd(v);
|
|
// Multiply.
|
|
sum = _mm_mul_pd(sum, floats2);
|
|
while (offset <= max_offset) {
|
|
__m128d floats1 = _mm_loadu_pd(u + offset);
|
|
floats2 = _mm_loadu_pd(v + offset);
|
|
offset += 2;
|
|
floats1 = _mm_mul_pd(floats1, floats2);
|
|
sum = _mm_add_pd(sum, floats1);
|
|
}
|
|
}
|
|
}
|
|
// Add the 2 sums in sum horizontally.
|
|
sum = _mm_hadd_pd(sum, sum);
|
|
// Extract the low result.
|
|
double result = _mm_cvtsd_f64(sum);
|
|
// Add on any left-over products.
|
|
while (offset < n) {
|
|
result += u[offset] * v[offset];
|
|
++offset;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Computes and returns the dot product of the n-vectors u and v.
|
|
// Uses Intel SSE intrinsics to access the SIMD instruction set.
|
|
int32_t IntDotProductSSE(const int8_t* u, const int8_t* v, int n) {
|
|
int max_offset = n - 8;
|
|
int offset = 0;
|
|
// Accumulate a set of 4 32-bit sums in sum, by loading 8 pairs of 8-bit
|
|
// values, extending to 16 bit, multiplying to make 32 bit results.
|
|
__m128i sum = _mm_setzero_si128();
|
|
if (offset <= max_offset) {
|
|
offset = 8;
|
|
__m128i packed1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(u));
|
|
__m128i packed2 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(v));
|
|
sum = _mm_cvtepi8_epi16(packed1);
|
|
packed2 = _mm_cvtepi8_epi16(packed2);
|
|
// The magic _mm_add_epi16 is perfect here. It multiplies 8 pairs of 16 bit
|
|
// ints to make 32 bit results, which are then horizontally added in pairs
|
|
// to make 4 32 bit results that still fit in a 128 bit register.
|
|
sum = _mm_madd_epi16(sum, packed2);
|
|
while (offset <= max_offset) {
|
|
packed1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(u + offset));
|
|
packed2 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(v + offset));
|
|
offset += 8;
|
|
packed1 = _mm_cvtepi8_epi16(packed1);
|
|
packed2 = _mm_cvtepi8_epi16(packed2);
|
|
packed1 = _mm_madd_epi16(packed1, packed2);
|
|
sum = _mm_add_epi32(sum, packed1);
|
|
}
|
|
}
|
|
// Sum the 4 packed 32 bit sums and extract the low result.
|
|
sum = _mm_hadd_epi32(sum, sum);
|
|
sum = _mm_hadd_epi32(sum, sum);
|
|
int32_t result = _mm_cvtsi128_si32(sum);
|
|
while (offset < n) {
|
|
result += u[offset] * v[offset];
|
|
++offset;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // namespace tesseract.
|
|
|
|
#endif // ANDROID_BUILD
|