tesseract/classify/kdtree.cpp

557 lines
18 KiB
C++

/******************************************************************************
** Filename: kdtree.cpp
** Purpose: Routines for managing K-D search trees
** Author: Dan Johnson
** History: 3/10/89, DSJ, Created.
** 5/23/89, DSJ, Added circular feature capability.
** 7/13/89, DSJ, Made tree nodes invisible to outside.
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
/*-----------------------------------------------------------------------------
Include Files and Type Defines
-----------------------------------------------------------------------------*/
#include "kdtree.h"
#include "const.h"
#include "emalloc.h"
#include <stdio.h>
#include <math.h>
#define Magnitude(X) ((X) < 0 ? -(X) : (X))
#define NodeFound(N,K,D) (( (N)->Key == (K) ) && ( (N)->Data == (D) ))
/*-----------------------------------------------------------------------------
Global Data Definitions and Declarations
-----------------------------------------------------------------------------*/
#define MINSEARCH -MAX_FLOAT32
#define MAXSEARCH MAX_FLOAT32
// Helper function to find the next essential dimension in a cycle.
static int NextLevel(KDTREE *tree, int level) {
do {
++level;
if (level >= tree->KeySize)
level = 0;
} while (tree->KeyDesc[level].NonEssential);
return level;
}
//-----------------------------------------------------------------------------
/** Store the k smallest-keyed key-value pairs. */
template<typename Key, typename Value>
class MinK {
public:
MinK(Key max_key, int k);
~MinK();
struct Element {
Element() {}
Element(const Key& k, const Value& v) : key(k), value(v) {}
Key key;
Value value;
};
bool insert(Key k, Value v);
const Key& max_insertable_key();
int elements_count() { return elements_count_; }
const Element* elements() { return elements_; }
private:
const Key max_key_; //< the maximum possible Key
Element *elements_; //< unsorted array of elements
int elements_count_; //< the number of results collected so far
int k_; //< the number of results we want from the search
int max_index_; //< the index of the result with the largest key
};
template<typename Key, typename Value>
MinK<Key, Value>::MinK(Key max_key, int k) :
max_key_(max_key), elements_count_(0), k_(k < 1 ? 1 : k), max_index_(0) {
elements_ = new Element[k_];
}
template<typename Key, typename Value>
MinK<Key, Value>::~MinK() {
delete []elements_;
}
template<typename Key, typename Value>
const Key& MinK<Key, Value>::max_insertable_key() {
if (elements_count_ < k_)
return max_key_;
return elements_[max_index_].key;
}
template<typename Key, typename Value>
bool MinK<Key, Value>::insert(Key key, Value value) {
if (elements_count_ < k_) {
elements_[elements_count_++] = Element(key, value);
if (key > elements_[max_index_].key)
max_index_ = elements_count_ - 1;
return true;
} else if (key < elements_[max_index_].key) {
// evict the largest element.
elements_[max_index_] = Element(key, value);
// recompute max_index_
for (int i = 0; i < elements_count_; i++) {
if (elements_[i].key > elements_[max_index_].key)
max_index_ = i;
}
return true;
}
return false;
}
//-----------------------------------------------------------------------------
/** Helper class for searching for the k closest points to query_point in tree.
*/
class KDTreeSearch {
public:
KDTreeSearch(KDTREE* tree, FLOAT32 *query_point, int k_closest);
~KDTreeSearch();
/** Return the k nearest points' data. */
void Search(int *result_count, FLOAT32 *distances, void **results);
private:
void SearchRec(int Level, KDNODE *SubTree);
bool BoxIntersectsSearch(FLOAT32 *lower, FLOAT32 *upper);
KDTREE *tree_;
FLOAT32 *query_point_;
FLOAT32 *sb_min_; //< search box minimum
FLOAT32 *sb_max_; //< search box maximum
MinK<FLOAT32, void *> results_;
};
KDTreeSearch::KDTreeSearch(KDTREE *tree, FLOAT32 *query_point, int k_closest)
: tree_(tree), query_point_(query_point), results_(MAXSEARCH, k_closest) {
sb_min_ = new FLOAT32[tree->KeySize];
sb_max_ = new FLOAT32[tree->KeySize];
}
KDTreeSearch::~KDTreeSearch() {
delete[] sb_min_;
delete[] sb_max_;
}
/// Locate the k_closest points to query_point_, and return their distances and
/// data into the given buffers.
void KDTreeSearch::Search(int *result_count,
FLOAT32 *distances,
void **results) {
if (tree_->Root.Left == NULL) {
*result_count = 0;
} else {
for (int i = 0; i < tree_->KeySize; i++) {
sb_min_[i] = tree_->KeyDesc[i].Min;
sb_max_[i] = tree_->KeyDesc[i].Max;
}
SearchRec(0, tree_->Root.Left);
int count = results_.elements_count();
*result_count = count;
for (int j = 0; j < count; j++) {
// Pre-cast to float64 as key is a template type and we have no control
// over its actual type.
distances[j] = (FLOAT32)sqrt((FLOAT64)results_.elements()[j].key);
results[j] = results_.elements()[j].value;
}
}
}
/*-----------------------------------------------------------------------------
Public Code
-----------------------------------------------------------------------------*/
/// @return a new KDTREE based on the specified parameters.
/// @param KeySize # of dimensions in the K-D tree
/// @param KeyDesc array of params to describe key dimensions
KDTREE *MakeKDTree(inT16 KeySize, const PARAM_DESC KeyDesc[]) {
KDTREE *KDTree = (KDTREE *) Emalloc(
sizeof(KDTREE) + (KeySize - 1) * sizeof(PARAM_DESC));
for (int i = 0; i < KeySize; i++) {
KDTree->KeyDesc[i].NonEssential = KeyDesc[i].NonEssential;
KDTree->KeyDesc[i].Circular = KeyDesc[i].Circular;
if (KeyDesc[i].Circular) {
KDTree->KeyDesc[i].Min = KeyDesc[i].Min;
KDTree->KeyDesc[i].Max = KeyDesc[i].Max;
KDTree->KeyDesc[i].Range = KeyDesc[i].Max - KeyDesc[i].Min;
KDTree->KeyDesc[i].HalfRange = KDTree->KeyDesc[i].Range / 2;
KDTree->KeyDesc[i].MidRange = (KeyDesc[i].Max + KeyDesc[i].Min) / 2;
} else {
KDTree->KeyDesc[i].Min = MINSEARCH;
KDTree->KeyDesc[i].Max = MAXSEARCH;
}
}
KDTree->KeySize = KeySize;
KDTree->Root.Left = NULL;
KDTree->Root.Right = NULL;
return KDTree;
}
/**
* This routine stores Data in the K-D tree specified by Tree
* using Key as an access key.
*
* @param Tree K-D tree in which data is to be stored
* @param Key ptr to key by which data can be retrieved
* @param Data ptr to data to be stored in the tree
*
* @note Exceptions: none
* @note History: 3/10/89, DSJ, Created.
* 7/13/89, DSJ, Changed return to void.
*/
void KDStore(KDTREE *Tree, FLOAT32 *Key, void *Data) {
int Level;
KDNODE *Node;
KDNODE **PtrToNode;
PtrToNode = &(Tree->Root.Left);
Node = *PtrToNode;
Level = NextLevel(Tree, -1);
while (Node != NULL) {
if (Key[Level] < Node->BranchPoint) {
PtrToNode = &(Node->Left);
if (Key[Level] > Node->LeftBranch)
Node->LeftBranch = Key[Level];
}
else {
PtrToNode = &(Node->Right);
if (Key[Level] < Node->RightBranch)
Node->RightBranch = Key[Level];
}
Level = NextLevel(Tree, Level);
Node = *PtrToNode;
}
*PtrToNode = MakeKDNode(Tree, Key, (void *) Data, Level);
} /* KDStore */
/**
* This routine deletes a node from Tree. The node to be
* deleted is specified by the Key for the node and the Data
* contents of the node. These two pointers must be identical
* to the pointers that were used for the node when it was
* originally stored in the tree. A node will be deleted from
* the tree only if its key and data pointers are identical
* to Key and Data respectively. The tree is re-formed by removing
* the affected subtree and inserting all elements but the root.
*
* @param Tree K-D tree to delete node from
* @param Key key of node to be deleted
* @param Data data contents of node to be deleted
*
* @note Exceptions: none
*
* @note History: 3/13/89, DSJ, Created.
* 7/13/89, DSJ, Specify node indirectly by key and data.
*/
void
KDDelete (KDTREE * Tree, FLOAT32 Key[], void *Data) {
int Level;
KDNODE *Current;
KDNODE *Father;
/* initialize search at root of tree */
Father = &(Tree->Root);
Current = Father->Left;
Level = NextLevel(Tree, -1);
/* search tree for node to be deleted */
while ((Current != NULL) && (!NodeFound (Current, Key, Data))) {
Father = Current;
if (Key[Level] < Current->BranchPoint)
Current = Current->Left;
else
Current = Current->Right;
Level = NextLevel(Tree, Level);
}
if (Current != NULL) { /* if node to be deleted was found */
if (Current == Father->Left) {
Father->Left = NULL;
Father->LeftBranch = Tree->KeyDesc[Level].Min;
} else {
Father->Right = NULL;
Father->RightBranch = Tree->KeyDesc[Level].Max;
}
InsertNodes(Tree, Current->Left);
InsertNodes(Tree, Current->Right);
FreeSubTree(Current);
}
} /* KDDelete */
/**
* This routine searches the K-D tree specified by Tree and
* finds the QuerySize nearest neighbors of Query. All neighbors
* must be within MaxDistance of Query. The data contents of
* the nearest neighbors
* are placed in NBuffer and their distances from Query are
* placed in DBuffer.
* @param Tree ptr to K-D tree to be searched
* @param Query ptr to query key (point in D-space)
* @param QuerySize number of nearest neighbors to be found
* @param MaxDistance all neighbors must be within this distance
* @param NBuffer ptr to QuerySize buffer to hold nearest neighbors
* @param DBuffer ptr to QuerySize buffer to hold distances
* from nearest neighbor to query point
* @param NumberOfResults [out] Number of nearest neighbors actually found
* @note Exceptions: none
* @note History:
* - 3/10/89, DSJ, Created.
* - 7/13/89, DSJ, Return contents of node instead of node itself.
*/
void KDNearestNeighborSearch(
KDTREE *Tree, FLOAT32 Query[], int QuerySize, FLOAT32 MaxDistance,
int *NumberOfResults, void **NBuffer, FLOAT32 DBuffer[]) {
KDTreeSearch search(Tree, Query, QuerySize);
search.Search(NumberOfResults, DBuffer, NBuffer);
}
/*---------------------------------------------------------------------------*/
/** Walk a given Tree with action. */
void KDWalk(KDTREE *Tree, void_proc action, void *context) {
if (Tree->Root.Left != NULL)
Walk(Tree, action, context, Tree->Root.Left, NextLevel(Tree, -1));
}
/*---------------------------------------------------------------------------*/
/**
* This routine frees all memory which is allocated to the
* specified KD-tree. This includes the data structure for
* the kd-tree itself plus the data structures for each node
* in the tree. It does not include the Key and Data items
* which are pointed to by the nodes. This memory is left
* untouched.
* @param Tree tree data structure to be released
* @return none
* @note Exceptions: none
* @note History: 5/26/89, DSJ, Created.
*/
void FreeKDTree(KDTREE *Tree) {
FreeSubTree(Tree->Root.Left);
free(Tree);
} /* FreeKDTree */
/*-----------------------------------------------------------------------------
Private Code
-----------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* This routine allocates memory for a new K-D tree node
* and places the specified Key and Data into it. The
* left and right subtree pointers for the node are
* initialized to empty subtrees.
* @param tree The tree to create the node for
* @param Key Access key for new node in KD tree
* @param Data ptr to data to be stored in new node
* @param Index index of Key to branch on
* @return pointer to new K-D tree node
* @note Exceptions: None
* @note History: 3/11/89, DSJ, Created.
*/
KDNODE *MakeKDNode(KDTREE *tree, FLOAT32 Key[], void *Data, int Index) {
KDNODE *NewNode;
NewNode = (KDNODE *) Emalloc (sizeof (KDNODE));
NewNode->Key = Key;
NewNode->Data = Data;
NewNode->BranchPoint = Key[Index];
NewNode->LeftBranch = tree->KeyDesc[Index].Min;
NewNode->RightBranch = tree->KeyDesc[Index].Max;
NewNode->Left = NULL;
NewNode->Right = NULL;
return NewNode;
} /* MakeKDNode */
/*---------------------------------------------------------------------------*/
void FreeKDNode(KDNODE *Node) { free(Node); }
/*---------------------------------------------------------------------------*/
/**
* Recursively accumulate the k_closest points to query_point_ into results_.
* @param Level level in tree of sub-tree to be searched
* @param SubTree sub-tree to be searched
*/
void KDTreeSearch::SearchRec(int level, KDNODE *sub_tree) {
if (level >= tree_->KeySize)
level = 0;
if (!BoxIntersectsSearch(sb_min_, sb_max_))
return;
results_.insert(DistanceSquared(tree_->KeySize, tree_->KeyDesc, query_point_,
sub_tree->Key),
sub_tree->Data);
if (query_point_[level] < sub_tree->BranchPoint) {
if (sub_tree->Left != NULL) {
FLOAT32 tmp = sb_max_[level];
sb_max_[level] = sub_tree->LeftBranch;
SearchRec(NextLevel(tree_, level), sub_tree->Left);
sb_max_[level] = tmp;
}
if (sub_tree->Right != NULL) {
FLOAT32 tmp = sb_min_[level];
sb_min_[level] = sub_tree->RightBranch;
SearchRec(NextLevel(tree_, level), sub_tree->Right);
sb_min_[level] = tmp;
}
} else {
if (sub_tree->Right != NULL) {
FLOAT32 tmp = sb_min_[level];
sb_min_[level] = sub_tree->RightBranch;
SearchRec(NextLevel(tree_, level), sub_tree->Right);
sb_min_[level] = tmp;
}
if (sub_tree->Left != NULL) {
FLOAT32 tmp = sb_max_[level];
sb_max_[level] = sub_tree->LeftBranch;
SearchRec(NextLevel(tree_, level), sub_tree->Left);
sb_max_[level] = tmp;
}
}
}
/*---------------------------------------------------------------------------*/
/**
*Returns the Euclidean distance squared between p1 and p2 for all essential
* dimensions.
* @param k keys are in k-space
* @param dim dimension descriptions (essential, circular, etc)
* @param p1,p2 two different points in K-D space
*/
FLOAT32 DistanceSquared(int k, PARAM_DESC *dim, FLOAT32 p1[], FLOAT32 p2[]) {
FLOAT32 total_distance = 0;
for (; k > 0; k--, p1++, p2++, dim++) {
if (dim->NonEssential)
continue;
FLOAT32 dimension_distance = *p1 - *p2;
/* if this dimension is circular - check wraparound distance */
if (dim->Circular) {
dimension_distance = Magnitude(dimension_distance);
FLOAT32 wrap_distance = dim->Max - dim->Min - dimension_distance;
dimension_distance = MIN(dimension_distance, wrap_distance);
}
total_distance += dimension_distance * dimension_distance;
}
return total_distance;
}
FLOAT32 ComputeDistance(int k, PARAM_DESC *dim, FLOAT32 p1[], FLOAT32 p2[]) {
return sqrt(DistanceSquared(k, dim, p1, p2));
}
/*---------------------------------------------------------------------------*/
/// Return whether the query region (the smallest known circle about
/// query_point_ containing results->k_ points) intersects the box specified
/// between lower and upper. For circular dimensions, we also check the point
/// one wrap distance away from the query.
bool KDTreeSearch::BoxIntersectsSearch(FLOAT32 *lower, FLOAT32 *upper) {
FLOAT32 *query = query_point_;
// Compute the sum in higher precision.
FLOAT64 total_distance = 0.0;
FLOAT64 radius_squared =
results_.max_insertable_key() * results_.max_insertable_key();
PARAM_DESC *dim = tree_->KeyDesc;
for (int i = tree_->KeySize; i > 0; i--, dim++, query++, lower++, upper++) {
if (dim->NonEssential)
continue;
FLOAT32 dimension_distance;
if (*query < *lower)
dimension_distance = *lower - *query;
else if (*query > *upper)
dimension_distance = *query - *upper;
else
dimension_distance = 0;
/* if this dimension is circular - check wraparound distance */
if (dim->Circular) {
FLOAT32 wrap_distance = MAX_FLOAT32;
if (*query < *lower)
wrap_distance = *query + dim->Max - dim->Min - *upper;
else if (*query > *upper)
wrap_distance = *lower - (*query - (dim->Max - dim->Min));
dimension_distance = MIN(dimension_distance, wrap_distance);
}
total_distance += dimension_distance * dimension_distance;
if (total_distance >= radius_squared)
return FALSE;
}
return TRUE;
}
/*---------------------------------------------------------------------------*/
/**
* Walk a tree, calling action once on each node.
*
* Operation:
* This routine walks through the specified sub_tree and invokes action
* action at each node as follows:
* action(context, data, level)
* data the data contents of the node being visited,
* level is the level of the node in the tree with the root being level 0.
* @param tree root of the tree being walked.
* @param action action to be performed at every node
* @param context action's context
* @param sub_tree ptr to root of subtree to be walked
* @param level current level in the tree for this node
*/
void Walk(KDTREE *tree, void_proc action, void *context,
KDNODE *sub_tree, inT32 level) {
(*action)(context, sub_tree->Data, level);
if (sub_tree->Left != NULL)
Walk(tree, action, context, sub_tree->Left, NextLevel(tree, level));
if (sub_tree->Right != NULL)
Walk(tree, action, context, sub_tree->Right, NextLevel(tree, level));
}
/** Given a subtree nodes, insert all of its elements into tree. */
void InsertNodes(KDTREE *tree, KDNODE *nodes) {
if (nodes == NULL)
return;
KDStore(tree, nodes->Key, nodes->Data);
InsertNodes(tree, nodes->Left);
InsertNodes(tree, nodes->Right);
}
/** Free all of the nodes of a sub tree. */
void FreeSubTree(KDNODE *sub_tree) {
if (sub_tree != NULL) {
FreeSubTree(sub_tree->Left);
FreeSubTree(sub_tree->Right);
free(sub_tree);
}
}