mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-28 05:39:35 +08:00
8f7be2e72c
Signed-off-by: Stefan Weil <sw@weilnetz.de>
998 lines
35 KiB
C++
998 lines
35 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: networkio.cpp
|
|
// Description: Network input/output data, allowing float/int implementations.
|
|
// Author: Ray Smith
|
|
// Created: Thu Jun 19 13:01:31 PST 2014
|
|
//
|
|
// (C) Copyright 2014, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "networkio.h"
|
|
|
|
#include "allheaders.h"
|
|
#include "functions.h"
|
|
#include "statistc.h"
|
|
#include "tprintf.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Minimum value to output for certainty.
|
|
const float kMinCertainty = -20.0f;
|
|
// Probability corresponding to kMinCertainty.
|
|
const float kMinProb = exp(kMinCertainty);
|
|
|
|
// Holds the optimal integer multiplier for this machine.
|
|
// This is a leaked, lazily initialized singleton, and is used for computing
|
|
// padding to apply to i_ for SIMD use.
|
|
IntSimdMatrix* NetworkIO::multiplier_ = nullptr;
|
|
|
|
// Resizes to a specific size as a 2-d temp buffer. No batches, no y-dim.
|
|
void NetworkIO::Resize2d(bool int_mode, int width, int num_features) {
|
|
stride_map_ = StrideMap();
|
|
int_mode_ = int_mode;
|
|
if (int_mode_) {
|
|
i_.ResizeNoInit(width, num_features, GetPadding(num_features));
|
|
} else {
|
|
f_.ResizeNoInit(width, num_features);
|
|
}
|
|
}
|
|
|
|
// Resizes to a specific stride_map.
|
|
void NetworkIO::ResizeToMap(bool int_mode, const StrideMap& stride_map,
|
|
int num_features) {
|
|
// If this assert fails, it most likely got here through an uninitialized
|
|
// scratch element, ie call NetworkScratch::IO::Resizexxx() not
|
|
// NetworkIO::Resizexxx()!!
|
|
ASSERT_HOST(this != nullptr);
|
|
stride_map_ = stride_map;
|
|
int_mode_ = int_mode;
|
|
if (int_mode_) {
|
|
i_.ResizeNoInit(stride_map.Width(), num_features, GetPadding(num_features));
|
|
} else {
|
|
f_.ResizeNoInit(stride_map.Width(), num_features);
|
|
}
|
|
ZeroInvalidElements();
|
|
}
|
|
|
|
// Shrinks image size by x_scale,y_scale, and use given number of features.
|
|
void NetworkIO::ResizeScaled(const NetworkIO& src,
|
|
int x_scale, int y_scale, int num_features) {
|
|
StrideMap stride_map = src.stride_map_;
|
|
stride_map.ScaleXY(x_scale, y_scale);
|
|
ResizeToMap(src.int_mode_, stride_map, num_features);
|
|
}
|
|
|
|
// Resizes to just 1 x-coord, whatever the input.
|
|
void NetworkIO::ResizeXTo1(const NetworkIO& src, int num_features) {
|
|
StrideMap stride_map = src.stride_map_;
|
|
stride_map.ReduceWidthTo1();
|
|
ResizeToMap(src.int_mode_, stride_map, num_features);
|
|
}
|
|
|
|
// Initialize all the array to zero.
|
|
void NetworkIO::Zero() {
|
|
int width = Width();
|
|
// Zero out the everything. Column-by-column in case it is aligned.
|
|
for (int t = 0; t < width; ++t) {
|
|
ZeroTimeStep(t);
|
|
}
|
|
}
|
|
|
|
// Initializes to zero all elements of the array that do not correspond to
|
|
// valid image positions. (If a batch of different-sized images are packed
|
|
// together, then there will be padding pixels.)
|
|
void NetworkIO::ZeroInvalidElements() {
|
|
int num_features = NumFeatures();
|
|
int full_width = stride_map_.Size(FD_WIDTH);
|
|
int full_height = stride_map_.Size(FD_HEIGHT);
|
|
StrideMap::Index b_index(stride_map_);
|
|
do {
|
|
int end_x = b_index.MaxIndexOfDim(FD_WIDTH) + 1;
|
|
if (end_x < full_width) {
|
|
// The width is small, so fill for every valid y.
|
|
StrideMap::Index y_index(b_index);
|
|
int fill_size = num_features * (full_width - end_x);
|
|
do {
|
|
StrideMap::Index z_index(y_index);
|
|
z_index.AddOffset(end_x, FD_WIDTH);
|
|
if (int_mode_) {
|
|
ZeroVector(fill_size, i_[z_index.t()]);
|
|
} else {
|
|
ZeroVector(fill_size, f_[z_index.t()]);
|
|
}
|
|
} while (y_index.AddOffset(1, FD_HEIGHT));
|
|
}
|
|
int end_y = b_index.MaxIndexOfDim(FD_HEIGHT) + 1;
|
|
if (end_y < full_height) {
|
|
// The height is small, so fill in the space in one go.
|
|
StrideMap::Index y_index(b_index);
|
|
y_index.AddOffset(end_y, FD_HEIGHT);
|
|
int fill_size = num_features * full_width * (full_height - end_y);
|
|
if (int_mode_) {
|
|
ZeroVector(fill_size, i_[y_index.t()]);
|
|
} else {
|
|
ZeroVector(fill_size, f_[y_index.t()]);
|
|
}
|
|
}
|
|
} while (b_index.AddOffset(1, FD_BATCH));
|
|
}
|
|
|
|
// Helper computes a black point and white point to contrast-enhance an image.
|
|
// The computation is based on the assumption that the image is of a single line
|
|
// of text, so a horizontal line through the middle of the image passes through
|
|
// at least some of it, so local minima and maxima are a good proxy for black
|
|
// and white pixel samples.
|
|
static void ComputeBlackWhite(Pix* pix, float* black, float* white) {
|
|
int width = pixGetWidth(pix);
|
|
int height = pixGetHeight(pix);
|
|
STATS mins(0, 256), maxes(0, 256);
|
|
if (width >= 3) {
|
|
int y = height / 2;
|
|
l_uint32* line = pixGetData(pix) + pixGetWpl(pix) * y;
|
|
int prev = GET_DATA_BYTE(line, 0);
|
|
int curr = GET_DATA_BYTE(line, 1);
|
|
for (int x = 1; x + 1 < width; ++x) {
|
|
int next = GET_DATA_BYTE(line, x + 1);
|
|
if ((curr < prev && curr <= next) || (curr <= prev && curr < next)) {
|
|
// Local minimum.
|
|
mins.add(curr, 1);
|
|
}
|
|
if ((curr > prev && curr >= next) || (curr >= prev && curr > next)) {
|
|
// Local maximum.
|
|
maxes.add(curr, 1);
|
|
}
|
|
prev = curr;
|
|
curr = next;
|
|
}
|
|
}
|
|
if (mins.get_total() == 0) mins.add(0, 1);
|
|
if (maxes.get_total() == 0) maxes.add(255, 1);
|
|
*black = mins.ile(0.25);
|
|
*white = maxes.ile(0.75);
|
|
}
|
|
|
|
// Sets up the array from the given image, using the currently set int_mode_.
|
|
// If the image width doesn't match the shape, the image is truncated or padded
|
|
// with noise to match.
|
|
void NetworkIO::FromPix(const StaticShape& shape, const Pix* pix,
|
|
TRand* randomizer) {
|
|
std::vector<const Pix*> pixes(1, pix);
|
|
FromPixes(shape, pixes, randomizer);
|
|
}
|
|
|
|
// Sets up the array from the given set of images, using the currently set
|
|
// int_mode_. If the image width doesn't match the shape, the images are
|
|
// truncated or padded with noise to match.
|
|
void NetworkIO::FromPixes(const StaticShape& shape,
|
|
const std::vector<const Pix*>& pixes,
|
|
TRand* randomizer) {
|
|
int target_height = shape.height();
|
|
int target_width = shape.width();
|
|
std::vector<std::pair<int, int>> h_w_pairs;
|
|
for (auto pix : pixes) {
|
|
Pix* var_pix = const_cast<Pix*>(pix);
|
|
int width = pixGetWidth(var_pix);
|
|
if (target_width != 0) width = target_width;
|
|
int height = pixGetHeight(var_pix);
|
|
if (target_height != 0) height = target_height;
|
|
h_w_pairs.emplace_back(height, width);
|
|
}
|
|
stride_map_.SetStride(h_w_pairs);
|
|
ResizeToMap(int_mode(), stride_map_, shape.depth());
|
|
// Iterate over the images again to copy the data.
|
|
for (size_t b = 0; b < pixes.size(); ++b) {
|
|
Pix* pix = const_cast<Pix*>(pixes[b]);
|
|
float black = 0.0f, white = 255.0f;
|
|
if (shape.depth() != 3) ComputeBlackWhite(pix, &black, &white);
|
|
float contrast = (white - black) / 2.0f;
|
|
if (contrast <= 0.0f) contrast = 1.0f;
|
|
if (shape.height() == 1) {
|
|
Copy1DGreyImage(b, pix, black, contrast, randomizer);
|
|
} else {
|
|
Copy2DImage(b, pix, black, contrast, randomizer);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copies the given pix to *this at the given batch index, stretching and
|
|
// clipping the pixel values so that [black, black + 2*contrast] maps to the
|
|
// dynamic range of *this, ie [-1,1] for a float and (-127,127) for int.
|
|
// This is a 2-d operation in the sense that the output depth is the number
|
|
// of input channels, the height is the height of the image, and the width
|
|
// is the width of the image, or truncated/padded with noise if the width
|
|
// is a fixed size.
|
|
void NetworkIO::Copy2DImage(int batch, Pix* pix, float black, float contrast,
|
|
TRand* randomizer) {
|
|
int width = pixGetWidth(pix);
|
|
int height = pixGetHeight(pix);
|
|
int wpl = pixGetWpl(pix);
|
|
StrideMap::Index index(stride_map_);
|
|
index.AddOffset(batch, FD_BATCH);
|
|
int t = index.t();
|
|
int target_height = stride_map_.Size(FD_HEIGHT);
|
|
int target_width = stride_map_.Size(FD_WIDTH);
|
|
int num_features = NumFeatures();
|
|
bool color = num_features == 3;
|
|
if (width > target_width) width = target_width;
|
|
uint32_t* line = pixGetData(pix);
|
|
for (int y = 0; y < target_height; ++y, line += wpl) {
|
|
int x = 0;
|
|
if (y < height) {
|
|
for (x = 0; x < width; ++x, ++t) {
|
|
if (color) {
|
|
int f = 0;
|
|
for (int c = COLOR_RED; c <= COLOR_BLUE; ++c) {
|
|
int pixel = GET_DATA_BYTE(line + x, c);
|
|
SetPixel(t, f++, pixel, black, contrast);
|
|
}
|
|
} else {
|
|
int pixel = GET_DATA_BYTE(line, x);
|
|
SetPixel(t, 0, pixel, black, contrast);
|
|
}
|
|
}
|
|
}
|
|
for (; x < target_width; ++x) Randomize(t++, 0, num_features, randomizer);
|
|
}
|
|
}
|
|
|
|
// Copies the given pix to *this at the given batch index, as Copy2DImage
|
|
// above, except that the output depth is the height of the input image, the
|
|
// output height is 1, and the output width as for Copy2DImage.
|
|
// The image is thus treated as a 1-d set of vertical pixel strips.
|
|
void NetworkIO::Copy1DGreyImage(int batch, Pix* pix, float black,
|
|
float contrast, TRand* randomizer) {
|
|
int width = pixGetWidth(pix);
|
|
int height = pixGetHeight(pix);
|
|
ASSERT_HOST(height == NumFeatures());
|
|
int wpl = pixGetWpl(pix);
|
|
StrideMap::Index index(stride_map_);
|
|
index.AddOffset(batch, FD_BATCH);
|
|
int t = index.t();
|
|
int target_width = stride_map_.Size(FD_WIDTH);
|
|
if (width > target_width) width = target_width;
|
|
int x;
|
|
for (x = 0; x < width; ++x, ++t) {
|
|
for (int y = 0; y < height; ++y) {
|
|
uint32_t* line = pixGetData(pix) + wpl * y;
|
|
int pixel = GET_DATA_BYTE(line, x);
|
|
SetPixel(t, y, pixel, black, contrast);
|
|
}
|
|
}
|
|
for (; x < target_width; ++x) Randomize(t++, 0, height, randomizer);
|
|
}
|
|
|
|
// Helper stores the pixel value in i_ or f_ according to int_mode_.
|
|
// t: is the index from the StrideMap corresponding to the current
|
|
// [batch,y,x] position
|
|
// f: is the index into the depth/channel
|
|
// pixel: the value of the pixel from the image (in one channel)
|
|
// black: the pixel value to map to the lowest of the range of *this
|
|
// contrast: the range of pixel values to stretch to half the range of *this.
|
|
void NetworkIO::SetPixel(int t, int f, int pixel, float black, float contrast) {
|
|
float float_pixel = (pixel - black) / contrast - 1.0f;
|
|
if (int_mode_) {
|
|
i_[t][f] = ClipToRange<int>(IntCastRounded((INT8_MAX + 1) * float_pixel),
|
|
-INT8_MAX, INT8_MAX);
|
|
} else {
|
|
f_[t][f] = float_pixel;
|
|
}
|
|
}
|
|
|
|
// Converts the array to a Pix. Must be pixDestroyed after use.
|
|
Pix* NetworkIO::ToPix() const {
|
|
// Count the width of the image, and find the max multiplication factor.
|
|
int im_width = stride_map_.Size(FD_WIDTH);
|
|
int im_height = stride_map_.Size(FD_HEIGHT);
|
|
int num_features = NumFeatures();
|
|
int feature_factor = 1;
|
|
if (num_features == 3) {
|
|
// Special hack for color.
|
|
num_features = 1;
|
|
feature_factor = 3;
|
|
}
|
|
Pix* pix = pixCreate(im_width, im_height * num_features, 32);
|
|
StrideMap::Index index(stride_map_);
|
|
do {
|
|
int im_x = index.index(FD_WIDTH);
|
|
int top_im_y = index.index(FD_HEIGHT);
|
|
int im_y = top_im_y;
|
|
int t = index.t();
|
|
if (int_mode_) {
|
|
const int8_t* features = i_[t];
|
|
for (int y = 0; y < num_features; ++y, im_y += im_height) {
|
|
int pixel = features[y * feature_factor];
|
|
// 1 or 2 features use greyscale.
|
|
int red = ClipToRange<int>(pixel + 128, 0, 255);
|
|
int green = red, blue = red;
|
|
if (feature_factor == 3) {
|
|
// With 3 features assume RGB color.
|
|
green = ClipToRange<int>(features[y * feature_factor + 1] + 128, 0, 255);
|
|
blue = ClipToRange<int>(features[y * feature_factor + 2] + 128, 0, 255);
|
|
} else if (num_features > 3) {
|
|
// More than 3 features use false yellow/blue color, assuming a signed
|
|
// input in the range [-1,1].
|
|
red = abs(pixel) * 2;
|
|
if (pixel >= 0) {
|
|
green = red;
|
|
blue = 0;
|
|
} else {
|
|
blue = red;
|
|
green = red = 0;
|
|
}
|
|
}
|
|
pixSetPixel(pix, im_x, im_y, (red << L_RED_SHIFT) |
|
|
(green << L_GREEN_SHIFT) |
|
|
(blue << L_BLUE_SHIFT));
|
|
}
|
|
} else {
|
|
const float* features = f_[t];
|
|
for (int y = 0; y < num_features; ++y, im_y += im_height) {
|
|
float pixel = features[y * feature_factor];
|
|
// 1 or 2 features use greyscale.
|
|
int red = ClipToRange<int>(IntCastRounded((pixel + 1.0f) * 127.5f), 0, 255);
|
|
int green = red, blue = red;
|
|
if (feature_factor == 3) {
|
|
// With 3 features assume RGB color.
|
|
pixel = features[y * feature_factor + 1];
|
|
green = ClipToRange<int>(IntCastRounded((pixel + 1.0f) * 127.5f), 0, 255);
|
|
pixel = features[y * feature_factor + 2];
|
|
blue = ClipToRange<int>(IntCastRounded((pixel + 1.0f) * 127.5f), 0, 255);
|
|
} else if (num_features > 3) {
|
|
// More than 3 features use false yellow/blue color, assuming a signed
|
|
// input in the range [-1,1].
|
|
red = ClipToRange<int>(IntCastRounded(fabs(pixel) * 255), 0, 255);
|
|
if (pixel >= 0) {
|
|
green = red;
|
|
blue = 0;
|
|
} else {
|
|
blue = red;
|
|
green = red = 0;
|
|
}
|
|
}
|
|
pixSetPixel(pix, im_x, im_y, (red << L_RED_SHIFT) |
|
|
(green << L_GREEN_SHIFT) |
|
|
(blue << L_BLUE_SHIFT));
|
|
}
|
|
}
|
|
} while (index.Increment());
|
|
return pix;
|
|
}
|
|
|
|
// Prints the first and last num timesteps of the array for each feature.
|
|
void NetworkIO::Print(int num) const {
|
|
int num_features = NumFeatures();
|
|
for (int y = 0; y < num_features; ++y) {
|
|
for (int t = 0; t < Width(); ++t) {
|
|
if (num == 0 || t < num || t + num >= Width()) {
|
|
if (int_mode_) {
|
|
tprintf(" %g", static_cast<float>(i_[t][y]) / INT8_MAX);
|
|
} else {
|
|
tprintf(" %g", f_[t][y]);
|
|
}
|
|
}
|
|
}
|
|
tprintf("\n");
|
|
}
|
|
}
|
|
|
|
// Copies a single time step from src.
|
|
void NetworkIO::CopyTimeStepFrom(int dest_t, const NetworkIO& src, int src_t) {
|
|
ASSERT_HOST(int_mode_ == src.int_mode_);
|
|
if (int_mode_) {
|
|
memcpy(i_[dest_t], src.i_[src_t], i_.dim2() * sizeof(i_[0][0]));
|
|
} else {
|
|
memcpy(f_[dest_t], src.f_[src_t], f_.dim2() * sizeof(f_[0][0]));
|
|
}
|
|
}
|
|
|
|
// Copies a part of single time step from src.
|
|
void NetworkIO::CopyTimeStepGeneral(int dest_t, int dest_offset,
|
|
int num_features, const NetworkIO& src,
|
|
int src_t, int src_offset) {
|
|
ASSERT_HOST(int_mode_ == src.int_mode_);
|
|
if (int_mode_) {
|
|
memcpy(i_[dest_t] + dest_offset, src.i_[src_t] + src_offset,
|
|
num_features * sizeof(i_[0][0]));
|
|
} else {
|
|
memcpy(f_[dest_t] + dest_offset, src.f_[src_t] + src_offset,
|
|
num_features * sizeof(f_[0][0]));
|
|
}
|
|
}
|
|
|
|
// Zeroes a single time step.
|
|
void NetworkIO::ZeroTimeStepGeneral(int t, int offset, int num_features) {
|
|
if (int_mode_) {
|
|
ZeroVector(num_features, i_[t] + offset);
|
|
} else {
|
|
ZeroVector(num_features, f_[t] + offset);
|
|
}
|
|
}
|
|
|
|
// Sets the given range to random values.
|
|
void NetworkIO::Randomize(int t, int offset, int num_features,
|
|
TRand* randomizer) {
|
|
if (int_mode_) {
|
|
int8_t* line = i_[t] + offset;
|
|
for (int i = 0; i < num_features; ++i)
|
|
line[i] = IntCastRounded(randomizer->SignedRand(INT8_MAX));
|
|
} else {
|
|
// float mode.
|
|
float* line = f_[t] + offset;
|
|
for (int i = 0; i < num_features; ++i)
|
|
line[i] = randomizer->SignedRand(1.0);
|
|
}
|
|
}
|
|
|
|
// Helper returns the label and score of the best choice over a range.
|
|
int NetworkIO::BestChoiceOverRange(int t_start, int t_end, int not_this,
|
|
int null_ch, float* rating,
|
|
float* certainty) const {
|
|
if (t_end <= t_start) return -1;
|
|
int max_char = -1;
|
|
float min_score = 0.0f;
|
|
for (int c = 0; c < NumFeatures(); ++c) {
|
|
if (c == not_this || c == null_ch) continue;
|
|
ScoresOverRange(t_start, t_end, c, null_ch, rating, certainty);
|
|
if (max_char < 0 || *rating < min_score) {
|
|
min_score = *rating;
|
|
max_char = c;
|
|
}
|
|
}
|
|
ScoresOverRange(t_start, t_end, max_char, null_ch, rating, certainty);
|
|
return max_char;
|
|
}
|
|
|
|
// Helper returns the rating and certainty of the choice over a range in output.
|
|
void NetworkIO::ScoresOverRange(int t_start, int t_end, int choice, int null_ch,
|
|
float* rating, float* certainty) const {
|
|
ASSERT_HOST(!int_mode_);
|
|
*rating = 0.0f;
|
|
*certainty = 0.0f;
|
|
if (t_end <= t_start || t_end <= 0) return;
|
|
float ratings[3] = {0.0f, 0.0f, 0.0f};
|
|
float certs[3] = {0.0f, 0.0f, 0.0f};
|
|
for (int t = t_start; t < t_end; ++t) {
|
|
const float* line = f_[t];
|
|
float score = ProbToCertainty(line[choice]);
|
|
float zero = ProbToCertainty(line[null_ch]);
|
|
if (t == t_start) {
|
|
ratings[2] = MAX_FLOAT32;
|
|
ratings[1] = -score;
|
|
certs[1] = score;
|
|
} else {
|
|
for (int i = 2; i >= 1; --i) {
|
|
if (ratings[i] > ratings[i - 1]) {
|
|
ratings[i] = ratings[i - 1];
|
|
certs[i] = certs[i - 1];
|
|
}
|
|
}
|
|
ratings[2] -= zero;
|
|
if (zero < certs[2]) certs[2] = zero;
|
|
ratings[1] -= score;
|
|
if (score < certs[1]) certs[1] = score;
|
|
}
|
|
ratings[0] -= zero;
|
|
if (zero < certs[0]) certs[0] = zero;
|
|
}
|
|
int best_i = ratings[2] < ratings[1] ? 2 : 1;
|
|
*rating = ratings[best_i] + t_end - t_start;
|
|
*certainty = certs[best_i];
|
|
}
|
|
|
|
// Returns the index (label) of the best value at the given timestep,
|
|
// excluding not_this and not_that, and if not null, sets the score to the
|
|
// log of the corresponding value.
|
|
int NetworkIO::BestLabel(int t, int not_this, int not_that,
|
|
float* score) const {
|
|
ASSERT_HOST(!int_mode_);
|
|
int best_index = -1;
|
|
float best_score = -MAX_FLOAT32;
|
|
const float* line = f_[t];
|
|
for (int i = 0; i < f_.dim2(); ++i) {
|
|
if (line[i] > best_score && i != not_this && i != not_that) {
|
|
best_score = line[i];
|
|
best_index = i;
|
|
}
|
|
}
|
|
if (score != nullptr) *score = ProbToCertainty(best_score);
|
|
return best_index;
|
|
}
|
|
|
|
// Returns the best start position out of [start, end) (into which all labels
|
|
// must fit) to obtain the highest cumulative score for the given labels.
|
|
int NetworkIO::PositionOfBestMatch(const GenericVector<int>& labels, int start,
|
|
int end) const {
|
|
int length = labels.size();
|
|
int last_start = end - length;
|
|
int best_start = -1;
|
|
double best_score = 0.0;
|
|
for (int s = start; s <= last_start; ++s) {
|
|
double score = ScoreOfLabels(labels, s);
|
|
if (score > best_score || best_start < 0) {
|
|
best_score = score;
|
|
best_start = s;
|
|
}
|
|
}
|
|
return best_start;
|
|
}
|
|
|
|
// Returns the cumulative score of the given labels starting at start, and
|
|
// using one label per time-step.
|
|
double NetworkIO::ScoreOfLabels(const GenericVector<int>& labels,
|
|
int start) const {
|
|
int length = labels.size();
|
|
double score = 0.0;
|
|
for (int i = 0; i < length; ++i) {
|
|
score += f_(start + i, labels[i]);
|
|
}
|
|
return score;
|
|
}
|
|
|
|
// Helper function sets all the outputs for a single timestep, such that
|
|
// label has value ok_score, and the other labels share 1 - ok_score.
|
|
void NetworkIO::SetActivations(int t, int label, float ok_score) {
|
|
ASSERT_HOST(!int_mode_);
|
|
int num_classes = NumFeatures();
|
|
float bad_score = (1.0f - ok_score) / (num_classes - 1);
|
|
float* targets = f_[t];
|
|
for (int i = 0; i < num_classes; ++i)
|
|
targets[i] = bad_score;
|
|
targets[label] = ok_score;
|
|
}
|
|
|
|
// Modifies the values, only if needed, so that the given label is
|
|
// the winner at the given time step t.
|
|
void NetworkIO::EnsureBestLabel(int t, int label) {
|
|
ASSERT_HOST(!int_mode_);
|
|
if (BestLabel(t, nullptr) != label) {
|
|
// Output value needs enhancing. Third all the other elements and add the
|
|
// remainder to best_label.
|
|
int num_classes = NumFeatures();
|
|
float* targets = f_[t];
|
|
for (int c = 0; c < num_classes; ++c) {
|
|
if (c == label) {
|
|
targets[c] += (1.0 - targets[c]) * (2 / 3.0);
|
|
} else {
|
|
targets[c] /= 3.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper function converts prob to certainty taking the minimum into account.
|
|
/* static */
|
|
float NetworkIO::ProbToCertainty(float prob) {
|
|
return prob > kMinProb ? log(prob) : kMinCertainty;
|
|
}
|
|
|
|
// Returns true if there is any bad value that is suspiciously like a GT
|
|
// error. Assuming that *this is the difference(gradient) between target
|
|
// and forward output, returns true if there is a large negative value
|
|
// (correcting a very confident output) for which there is no corresponding
|
|
// positive value in an adjacent timestep for the same feature index. This
|
|
// allows the box-truthed samples to make fine adjustments to position while
|
|
// stopping other disagreements of confident output with ground truth.
|
|
bool NetworkIO::AnySuspiciousTruth(float confidence_thr) const {
|
|
int num_features = NumFeatures();
|
|
for (int t = 0; t < Width(); ++t) {
|
|
const float* features = f_[t];
|
|
for (int y = 0; y < num_features; ++y) {
|
|
float grad = features[y];
|
|
if (grad < -confidence_thr) {
|
|
// Correcting strong output. Check for movement.
|
|
if ((t == 0 || f_[t - 1][y] < confidence_thr / 2) &&
|
|
(t + 1 == Width() || f_[t + 1][y] < confidence_thr / 2)) {
|
|
return true; // No strong positive on either side.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Reads a single timestep to floats in the range [-1, 1].
|
|
void NetworkIO::ReadTimeStep(int t, double* output) const {
|
|
if (int_mode_) {
|
|
const int8_t* line = i_[t];
|
|
for (int i = 0; i < i_.dim2(); ++i) {
|
|
output[i] = static_cast<double>(line[i]) / INT8_MAX;
|
|
}
|
|
} else {
|
|
const float* line = f_[t];
|
|
for (int i = 0; i < f_.dim2(); ++i) {
|
|
output[i] = static_cast<double>(line[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds a single timestep to floats.
|
|
void NetworkIO::AddTimeStep(int t, double* inout) const {
|
|
int num_features = NumFeatures();
|
|
if (int_mode_) {
|
|
const int8_t* line = i_[t];
|
|
for (int i = 0; i < num_features; ++i) {
|
|
inout[i] += static_cast<double>(line[i]) / INT8_MAX;
|
|
}
|
|
} else {
|
|
const float* line = f_[t];
|
|
for (int i = 0; i < num_features; ++i) {
|
|
inout[i] += line[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds part of a single timestep to floats.
|
|
void NetworkIO::AddTimeStepPart(int t, int offset, int num_features,
|
|
float* inout) const {
|
|
if (int_mode_) {
|
|
const int8_t* line = i_[t] + offset;
|
|
for (int i = 0; i < num_features; ++i) {
|
|
inout[i] += static_cast<float>(line[i]) / INT8_MAX;
|
|
}
|
|
} else {
|
|
const float* line = f_[t] + offset;
|
|
for (int i = 0; i < num_features; ++i) {
|
|
inout[i] += line[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Writes a single timestep from floats in the range [-1, 1].
|
|
void NetworkIO::WriteTimeStep(int t, const double* input) {
|
|
WriteTimeStepPart(t, 0, NumFeatures(), input);
|
|
}
|
|
|
|
// Writes a single timestep from floats in the range [-1, 1] writing only
|
|
// num_features elements of input to (*this)[t], starting at offset.
|
|
void NetworkIO::WriteTimeStepPart(int t, int offset, int num_features,
|
|
const double* input) {
|
|
if (int_mode_) {
|
|
int8_t* line = i_[t] + offset;
|
|
for (int i = 0; i < num_features; ++i) {
|
|
line[i] = ClipToRange<int>(IntCastRounded(input[i] * INT8_MAX),
|
|
-INT8_MAX, INT8_MAX);
|
|
}
|
|
} else {
|
|
float* line = f_[t] + offset;
|
|
for (int i = 0; i < num_features; ++i) {
|
|
line[i] = static_cast<float>(input[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Maxpools a single time step from src.
|
|
void NetworkIO::MaxpoolTimeStep(int dest_t, const NetworkIO& src, int src_t,
|
|
int* max_line) {
|
|
ASSERT_HOST(int_mode_ == src.int_mode_);
|
|
if (int_mode_) {
|
|
int dim = i_.dim2();
|
|
int8_t* dest_line = i_[dest_t];
|
|
const int8_t* src_line = src.i_[src_t];
|
|
for (int i = 0; i < dim; ++i) {
|
|
if (dest_line[i] < src_line[i]) {
|
|
dest_line[i] = src_line[i];
|
|
max_line[i] = src_t;
|
|
}
|
|
}
|
|
} else {
|
|
int dim = f_.dim2();
|
|
float* dest_line = f_[dest_t];
|
|
const float* src_line = src.f_[src_t];
|
|
for (int i = 0; i < dim; ++i) {
|
|
if (dest_line[i] < src_line[i]) {
|
|
dest_line[i] = src_line[i];
|
|
max_line[i] = src_t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Runs maxpool backward, using maxes to index timesteps in *this.
|
|
void NetworkIO::MaxpoolBackward(const NetworkIO& fwd,
|
|
const GENERIC_2D_ARRAY<int>& maxes) {
|
|
ASSERT_HOST(!int_mode_);
|
|
Zero();
|
|
StrideMap::Index index(fwd.stride_map_);
|
|
do {
|
|
int t = index.t();
|
|
const int* max_line = maxes[t];
|
|
const float* fwd_line = fwd.f_[t];
|
|
int num_features = fwd.f_.dim2();
|
|
for (int i = 0; i < num_features; ++i) {
|
|
f_[max_line[i]][i] = fwd_line[i];
|
|
}
|
|
} while (index.Increment());
|
|
}
|
|
|
|
// Returns the min over time of the maxes over features of the outputs.
|
|
float NetworkIO::MinOfMaxes() const {
|
|
float min_max = 0.0f;
|
|
int width = Width();
|
|
int num_features = NumFeatures();
|
|
for (int t = 0; t < width; ++t) {
|
|
float max_value = -MAX_FLOAT32;
|
|
if (int_mode_) {
|
|
const int8_t* column = i_[t];
|
|
for (int i = 0; i < num_features; ++i) {
|
|
if (column[i] > max_value) max_value = column[i];
|
|
}
|
|
} else {
|
|
const float* column = f_[t];
|
|
for (int i = 0; i < num_features; ++i) {
|
|
if (column[i] > max_value) max_value = column[i];
|
|
}
|
|
}
|
|
if (t == 0 || max_value < min_max) min_max = max_value;
|
|
}
|
|
return min_max;
|
|
}
|
|
|
|
// Computes combined results for a combiner that chooses between an existing
|
|
// input and itself, with an additional output to indicate the choice.
|
|
void NetworkIO::CombineOutputs(const NetworkIO& base_output,
|
|
const NetworkIO& combiner_output) {
|
|
int no = base_output.NumFeatures();
|
|
ASSERT_HOST(combiner_output.NumFeatures() == no + 1);
|
|
Resize(base_output, no);
|
|
int width = Width();
|
|
if (int_mode_) {
|
|
// Number of outputs from base and final result.
|
|
for (int t = 0; t < width; ++t) {
|
|
int8_t* out_line = i_[t];
|
|
const int8_t* base_line = base_output.i_[t];
|
|
const int8_t* comb_line = combiner_output.i_[t];
|
|
float base_weight = static_cast<float>(comb_line[no]) / INT8_MAX;
|
|
float boost_weight = 1.0f - base_weight;
|
|
for (int i = 0; i < no; ++i) {
|
|
out_line[i] = IntCastRounded(base_line[i] * base_weight +
|
|
comb_line[i] * boost_weight);
|
|
}
|
|
}
|
|
} else {
|
|
for (int t = 0; t < width; ++t) {
|
|
float* out_line = f_[t];
|
|
const float* base_line = base_output.f_[t];
|
|
const float* comb_line = combiner_output.f_[t];
|
|
float base_weight = comb_line[no];
|
|
float boost_weight = 1.0f - base_weight;
|
|
for (int i = 0; i < no; ++i) {
|
|
out_line[i] = base_line[i] * base_weight + comb_line[i] * boost_weight;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Computes deltas for a combiner that chooses between 2 sets of inputs.
|
|
void NetworkIO::ComputeCombinerDeltas(const NetworkIO& fwd_deltas,
|
|
const NetworkIO& base_output) {
|
|
ASSERT_HOST(!int_mode_);
|
|
// Compute the deltas for the combiner.
|
|
int width = Width();
|
|
int no = NumFeatures() - 1;
|
|
ASSERT_HOST(fwd_deltas.NumFeatures() == no);
|
|
ASSERT_HOST(base_output.NumFeatures() == no);
|
|
// Number of outputs from base and final result.
|
|
for (int t = 0; t < width; ++t) {
|
|
const float* delta_line = fwd_deltas.f_[t];
|
|
const float* base_line = base_output.f_[t];
|
|
float* comb_line = f_[t];
|
|
float base_weight = comb_line[no];
|
|
float boost_weight = 1.0f - base_weight;
|
|
float max_base_delta = 0.0;
|
|
for (int i = 0; i < no; ++i) {
|
|
// What did the combiner actually produce?
|
|
float output = base_line[i] * base_weight + comb_line[i] * boost_weight;
|
|
// Reconstruct the target from the delta.
|
|
float comb_target = delta_line[i] + output;
|
|
comb_line[i] = comb_target - comb_line[i];
|
|
float base_delta = fabs(comb_target - base_line[i]);
|
|
if (base_delta > max_base_delta) max_base_delta = base_delta;
|
|
}
|
|
if (max_base_delta >= 0.5) {
|
|
// The base network got it wrong. The combiner should output the right
|
|
// answer and 0 for the base network.
|
|
comb_line[no] = 0.0 - base_weight;
|
|
} else {
|
|
// The base network was right. The combiner should flag that.
|
|
for (int i = 0; i < no; ++i) {
|
|
// All other targets are 0.
|
|
if (comb_line[i] > 0.0) comb_line[i] -= 1.0;
|
|
}
|
|
comb_line[no] = 1.0 - base_weight;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copies the array checking that the types match.
|
|
void NetworkIO::CopyAll(const NetworkIO& src) {
|
|
ASSERT_HOST(src.int_mode_ == int_mode_);
|
|
f_ = src.f_;
|
|
}
|
|
|
|
// Checks that both are floats and adds the src array to *this.
|
|
void NetworkIO::AddAllToFloat(const NetworkIO& src) {
|
|
ASSERT_HOST(!int_mode_);
|
|
ASSERT_HOST(!src.int_mode_);
|
|
f_ += src.f_;
|
|
}
|
|
|
|
// Subtracts the array from a float array. src must also be float.
|
|
void NetworkIO::SubtractAllFromFloat(const NetworkIO& src) {
|
|
ASSERT_HOST(!int_mode_);
|
|
ASSERT_HOST(!src.int_mode_);
|
|
f_ -= src.f_;
|
|
}
|
|
|
|
// Copies src to *this, with maxabs normalization to match scale.
|
|
void NetworkIO::CopyWithNormalization(const NetworkIO& src,
|
|
const NetworkIO& scale) {
|
|
ASSERT_HOST(!int_mode_);
|
|
ASSERT_HOST(!src.int_mode_);
|
|
ASSERT_HOST(!scale.int_mode_);
|
|
float src_max = src.f_.MaxAbs();
|
|
ASSERT_HOST(std::isfinite(src_max));
|
|
float scale_max = scale.f_.MaxAbs();
|
|
ASSERT_HOST(std::isfinite(scale_max));
|
|
if (src_max > 0.0f) {
|
|
float factor = scale_max / src_max;
|
|
for (int t = 0; t < src.Width(); ++t) {
|
|
const float* src_ptr = src.f_[t];
|
|
float* dest_ptr = f_[t];
|
|
for (int i = 0; i < src.f_.dim2(); ++i) dest_ptr[i] = src_ptr[i] * factor;
|
|
}
|
|
} else {
|
|
f_.Clear();
|
|
}
|
|
}
|
|
|
|
// Copies src to *this with independent reversal of the y dimension.
|
|
void NetworkIO::CopyWithYReversal(const NetworkIO& src) {
|
|
int num_features = src.NumFeatures();
|
|
Resize(src, num_features);
|
|
StrideMap::Index b_index(src.stride_map_);
|
|
do {
|
|
int width = b_index.MaxIndexOfDim(FD_WIDTH) + 1;
|
|
StrideMap::Index fwd_index(b_index);
|
|
StrideMap::Index rev_index(b_index);
|
|
rev_index.AddOffset(rev_index.MaxIndexOfDim(FD_HEIGHT), FD_HEIGHT);
|
|
do {
|
|
int fwd_t = fwd_index.t();
|
|
int rev_t = rev_index.t();
|
|
for (int x = 0; x < width; ++x) CopyTimeStepFrom(rev_t++, src, fwd_t++);
|
|
} while (fwd_index.AddOffset(1, FD_HEIGHT) &&
|
|
rev_index.AddOffset(-1, FD_HEIGHT));
|
|
} while (b_index.AddOffset(1, FD_BATCH));
|
|
}
|
|
|
|
// Copies src to *this with independent reversal of the x dimension.
|
|
void NetworkIO::CopyWithXReversal(const NetworkIO& src) {
|
|
int num_features = src.NumFeatures();
|
|
Resize(src, num_features);
|
|
StrideMap::Index b_index(src.stride_map_);
|
|
do {
|
|
StrideMap::Index y_index(b_index);
|
|
do {
|
|
StrideMap::Index fwd_index(y_index);
|
|
StrideMap::Index rev_index(y_index);
|
|
rev_index.AddOffset(rev_index.MaxIndexOfDim(FD_WIDTH), FD_WIDTH);
|
|
do {
|
|
CopyTimeStepFrom(rev_index.t(), src, fwd_index.t());
|
|
} while (fwd_index.AddOffset(1, FD_WIDTH) &&
|
|
rev_index.AddOffset(-1, FD_WIDTH));
|
|
} while (y_index.AddOffset(1, FD_HEIGHT));
|
|
} while (b_index.AddOffset(1, FD_BATCH));
|
|
}
|
|
|
|
// Copies src to *this with independent transpose of the x and y dimensions.
|
|
void NetworkIO::CopyWithXYTranspose(const NetworkIO& src) {
|
|
int num_features = src.NumFeatures();
|
|
stride_map_ = src.stride_map_;
|
|
stride_map_.TransposeXY();
|
|
ResizeToMap(src.int_mode(), stride_map_, num_features);
|
|
StrideMap::Index src_b_index(src.stride_map_);
|
|
StrideMap::Index dest_b_index(stride_map_);
|
|
do {
|
|
StrideMap::Index src_y_index(src_b_index);
|
|
StrideMap::Index dest_x_index(dest_b_index);
|
|
do {
|
|
StrideMap::Index src_x_index(src_y_index);
|
|
StrideMap::Index dest_y_index(dest_x_index);
|
|
do {
|
|
CopyTimeStepFrom(dest_y_index.t(), src, src_x_index.t());
|
|
} while (src_x_index.AddOffset(1, FD_WIDTH) &&
|
|
dest_y_index.AddOffset(1, FD_HEIGHT));
|
|
} while (src_y_index.AddOffset(1, FD_HEIGHT) &&
|
|
dest_x_index.AddOffset(1, FD_WIDTH));
|
|
} while (src_b_index.AddOffset(1, FD_BATCH) &&
|
|
dest_b_index.AddOffset(1, FD_BATCH));
|
|
}
|
|
|
|
// Copies src to *this, at the given feature_offset, returning the total
|
|
// feature offset after the copy. Multiple calls will stack outputs from
|
|
// multiple sources in feature space.
|
|
int NetworkIO::CopyPacking(const NetworkIO& src, int feature_offset) {
|
|
ASSERT_HOST(int_mode_ == src.int_mode_);
|
|
int width = src.Width();
|
|
ASSERT_HOST(width <= Width());
|
|
int num_features = src.NumFeatures();
|
|
ASSERT_HOST(num_features + feature_offset <= NumFeatures());
|
|
if (int_mode_) {
|
|
for (int t = 0; t < width; ++t) {
|
|
memcpy(i_[t] + feature_offset, src.i_[t],
|
|
num_features * sizeof(i_[t][0]));
|
|
}
|
|
for (int t = width; t < i_.dim1(); ++t) {
|
|
memset(i_[t], 0, num_features * sizeof(i_[t][0]));
|
|
}
|
|
} else {
|
|
for (int t = 0; t < width; ++t) {
|
|
memcpy(f_[t] + feature_offset, src.f_[t],
|
|
num_features * sizeof(f_[t][0]));
|
|
}
|
|
for (int t = width; t < f_.dim1(); ++t) {
|
|
memset(f_[t], 0, num_features * sizeof(f_[t][0]));
|
|
}
|
|
}
|
|
return num_features + feature_offset;
|
|
}
|
|
|
|
// Opposite of CopyPacking, fills *this with a part of src, starting at
|
|
// feature_offset, and picking num_features.
|
|
void NetworkIO::CopyUnpacking(const NetworkIO& src, int feature_offset,
|
|
int num_features) {
|
|
Resize(src, num_features);
|
|
int width = src.Width();
|
|
ASSERT_HOST(num_features + feature_offset <= src.NumFeatures());
|
|
if (int_mode_) {
|
|
for (int t = 0; t < width; ++t) {
|
|
memcpy(i_[t], src.i_[t] + feature_offset,
|
|
num_features * sizeof(i_[t][0]));
|
|
}
|
|
} else {
|
|
for (int t = 0; t < width; ++t) {
|
|
memcpy(f_[t], src.f_[t] + feature_offset,
|
|
num_features * sizeof(f_[t][0]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transposes the float part of *this into dest.
|
|
void NetworkIO::Transpose(TransposedArray* dest) const {
|
|
int width = Width();
|
|
dest->ResizeNoInit(NumFeatures(), width);
|
|
for (int t = 0; t < width; ++t) dest->WriteStrided(t, f_[t]);
|
|
}
|
|
|
|
// Clips the content of a single time-step to +/-range.
|
|
void NetworkIO::ClipVector(int t, float range) {
|
|
ASSERT_HOST(!int_mode_);
|
|
float* v = f_[t];
|
|
int dim = f_.dim2();
|
|
for (int i = 0; i < dim; ++i)
|
|
v[i] = ClipToRange<float>(v[i], -range, range);
|
|
}
|
|
|
|
// Returns the padding required for the given number of features in order
|
|
// for the SIMD operations to be safe.
|
|
/* static */
|
|
int NetworkIO::GetPadding(int num_features) {
|
|
if (multiplier_ == nullptr)
|
|
multiplier_ = IntSimdMatrix::GetFastestMultiplier();
|
|
int pad = 0;
|
|
if (multiplier_ != nullptr) {
|
|
pad = multiplier_->RoundInputs(num_features) - num_features;
|
|
}
|
|
return pad;
|
|
}
|
|
|
|
} // namespace tesseract.
|