mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-04 16:23:40 +08:00
2186613963
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@241 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2957 lines
112 KiB
C++
2957 lines
112 KiB
C++
/******************************************************************************
|
|
** Filename: adaptmatch.c
|
|
** Purpose: High level adaptive matcher.
|
|
** Author: Dan Johnson
|
|
** History: Mon Mar 11 10:00:10 1991, DSJ, Created.
|
|
**
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Include Files and Type Defines
|
|
----------------------------------------------------------------------------**/
|
|
#include <ctype.h>
|
|
#include "adaptmatch.h"
|
|
#include "normfeat.h"
|
|
#include "mfoutline.h"
|
|
#include "picofeat.h"
|
|
#include "float2int.h"
|
|
#include "outfeat.h"
|
|
#include "emalloc.h"
|
|
#include "intfx.h"
|
|
#include "permnum.h"
|
|
#include "speckle.h"
|
|
#include "efio.h"
|
|
#include "normmatch.h"
|
|
#include "stopper.h"
|
|
#include "permute.h"
|
|
#include "context.h"
|
|
#include "ndminx.h"
|
|
#include "intproto.h"
|
|
#include "const.h"
|
|
#include "globals.h"
|
|
#include "werd.h"
|
|
#include "callcpp.h"
|
|
#include "tordvars.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#ifdef __UNIX__
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#define ADAPT_TEMPLATE_SUFFIX ".a"
|
|
#define BUILT_IN_TEMPLATES_FILE "inttemp"
|
|
#define BUILT_IN_CUTOFFS_FILE "pffmtable"
|
|
|
|
#define MAX_MATCHES 10
|
|
#define UNLIKELY_NUM_FEAT 200
|
|
#define NO_DEBUG 0
|
|
#define MAX_ADAPTABLE_WERD_SIZE 40
|
|
|
|
#define ADAPTABLE_WERD (GOOD_NUMBER + 0.05)
|
|
|
|
#define Y_DIM_OFFSET (Y_SHIFT - BASELINE_Y_SHIFT)
|
|
|
|
#define WORST_POSSIBLE_RATING (1.0)
|
|
|
|
typedef struct
|
|
{
|
|
inT32 BlobLength;
|
|
int NumMatches;
|
|
CLASS_ID Classes[MAX_NUM_CLASSES];
|
|
FLOAT32 Ratings[MAX_CLASS_ID + 1];
|
|
uinT8 Configs[MAX_CLASS_ID + 1];
|
|
FLOAT32 BestRating;
|
|
CLASS_ID BestClass;
|
|
uinT8 BestConfig;
|
|
CLASS_PRUNER_RESULTS CPResults;
|
|
}
|
|
|
|
|
|
ADAPT_RESULTS;
|
|
|
|
typedef struct
|
|
{
|
|
ADAPT_TEMPLATES Templates;
|
|
CLASS_ID ClassId;
|
|
int ConfigId;
|
|
}
|
|
|
|
|
|
PROTO_KEY;
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Private Macros
|
|
----------------------------------------------------------------------------**/
|
|
#define MarginalMatch(Rating) \
|
|
((Rating) > GreatAdaptiveMatch)
|
|
|
|
#define TempConfigReliable(Config) \
|
|
((Config)->NumTimesSeen >= ReliableConfigThreshold)
|
|
|
|
#define InitIntFX() (FeaturesHaveBeenExtracted = FALSE)
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Private Function Prototypes
|
|
----------------------------------------------------------------------------**/
|
|
void AdaptToChar(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID ClassId,
|
|
FLOAT32 Threshold);
|
|
|
|
void AdaptToPunc(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID ClassId,
|
|
FLOAT32 Threshold);
|
|
|
|
void AddNewResult(ADAPT_RESULTS *Results,
|
|
CLASS_ID ClassId,
|
|
FLOAT32 Rating,
|
|
int ConfigId);
|
|
|
|
void AmbigClassifier(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
UNICHAR_ID *Ambiguities,
|
|
ADAPT_RESULTS *Results);
|
|
|
|
UNICHAR_ID *BaselineClassifier(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
ADAPT_TEMPLATES Templates,
|
|
ADAPT_RESULTS *Results);
|
|
|
|
void make_config_pruner(INT_TEMPLATES templates, CONFIG_PRUNER *config_pruner);
|
|
|
|
void CharNormClassifier(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
ADAPT_RESULTS *Results);
|
|
|
|
void ClassifyAsNoise(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
ADAPT_RESULTS *Results);
|
|
|
|
int CompareCurrentRatings(const void *arg1,
|
|
const void *arg2);
|
|
|
|
LIST ConvertMatchesToChoices(ADAPT_RESULTS *Results);
|
|
|
|
void DebugAdaptiveClassifier(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
ADAPT_RESULTS *Results);
|
|
|
|
void DoAdaptiveMatch(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
ADAPT_RESULTS *Results);
|
|
|
|
void GetAdaptThresholds(TWERD * Word,
|
|
LINE_STATS * LineStats,
|
|
const WERD_CHOICE& BestChoice,
|
|
const WERD_CHOICE& BestRawChoice, FLOAT32 Thresholds[]);
|
|
|
|
UNICHAR_ID *GetAmbiguities(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID CorrectClass);
|
|
|
|
int GetBaselineFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray,
|
|
inT32 *BlobLength);
|
|
|
|
FLOAT32 GetBestRatingFor(TBLOB *Blob, LINE_STATS *LineStats, CLASS_ID ClassId);
|
|
|
|
int GetCharNormFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray,
|
|
inT32 *BlobLength);
|
|
|
|
int GetIntBaselineFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray,
|
|
inT32 *BlobLength);
|
|
|
|
int GetIntCharNormFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray,
|
|
inT32 *BlobLength);
|
|
|
|
void InitMatcherRatings(register FLOAT32 *Rating);
|
|
|
|
int MakeNewTemporaryConfig(ADAPT_TEMPLATES Templates,
|
|
CLASS_ID ClassId,
|
|
int NumFeatures,
|
|
INT_FEATURE_ARRAY Features,
|
|
FEATURE_SET FloatFeatures);
|
|
|
|
PROTO_ID MakeNewTempProtos(FEATURE_SET Features,
|
|
int NumBadFeat,
|
|
FEATURE_ID BadFeat[],
|
|
INT_CLASS IClass,
|
|
ADAPT_CLASS Class, BIT_VECTOR TempProtoMask);
|
|
|
|
void MakePermanent(ADAPT_TEMPLATES Templates,
|
|
CLASS_ID ClassId,
|
|
int ConfigId,
|
|
TBLOB *Blob,
|
|
LINE_STATS *LineStats);
|
|
|
|
int MakeTempProtoPerm(void *item1, void *item2);
|
|
|
|
int NumBlobsIn(TWERD *Word);
|
|
|
|
int NumOutlinesInBlob(TBLOB *Blob);
|
|
|
|
void PrintAdaptiveMatchResults(FILE *File, ADAPT_RESULTS *Results);
|
|
|
|
void RemoveBadMatches(ADAPT_RESULTS *Results);
|
|
|
|
void RemoveExtraPuncs(ADAPT_RESULTS *Results);
|
|
|
|
void SetAdaptiveThreshold(FLOAT32 Threshold);
|
|
void ShowBestMatchFor(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID ClassId,
|
|
BOOL8 AdaptiveOn,
|
|
BOOL8 PreTrainedOn);
|
|
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Global Data Definitions and Declarations
|
|
----------------------------------------------------------------------------**/
|
|
/* name of current image file being processed */
|
|
extern char imagefile[];
|
|
INT_VAR(tessedit_single_match, FALSE, "Top choice only from CP");
|
|
|
|
/* variables used to hold performance statistics */
|
|
static int AdaptiveMatcherCalls = 0;
|
|
static int BaselineClassifierCalls = 0;
|
|
static int CharNormClassifierCalls = 0;
|
|
static int AmbigClassifierCalls = 0;
|
|
static int NumWordsAdaptedTo = 0;
|
|
static int NumCharsAdaptedTo = 0;
|
|
static int NumBaselineClassesTried = 0;
|
|
static int NumCharNormClassesTried = 0;
|
|
static int NumAmbigClassesTried = 0;
|
|
static int NumClassesOutput = 0;
|
|
static int NumAdaptationsFailed = 0;
|
|
|
|
/* define globals used to hold onto extracted features. This is used
|
|
to map from the old scheme in which baseline features and char norm
|
|
features are extracted separately, to the new scheme in which they
|
|
are extracted at the same time. */
|
|
static BOOL8 FeaturesHaveBeenExtracted = FALSE;
|
|
static BOOL8 FeaturesOK = TRUE;
|
|
static INT_FEATURE_ARRAY BaselineFeatures;
|
|
static INT_FEATURE_ARRAY CharNormFeatures;
|
|
static INT_FX_RESULT_STRUCT FXInfo;
|
|
|
|
/* use a global variable to hold onto the current ratings so that the
|
|
comparison function passes to qsort can get at them */
|
|
static FLOAT32 *CurrentRatings;
|
|
|
|
/* define globals to hold filenames of training data */
|
|
static const char *BuiltInTemplatesFile = BUILT_IN_TEMPLATES_FILE;
|
|
static const char *BuiltInCutoffsFile = BUILT_IN_CUTOFFS_FILE;
|
|
static CLASS_CUTOFF_ARRAY CharNormCutoffs;
|
|
static CLASS_CUTOFF_ARRAY BaselineCutoffs;
|
|
|
|
/* use global variables to hold onto built-in templates and adapted
|
|
templates */
|
|
static INT_TEMPLATES PreTrainedTemplates;
|
|
static ADAPT_TEMPLATES AdaptedTemplates;
|
|
|
|
/* create dummy proto and config masks for use with the built-in templates */
|
|
static BIT_VECTOR AllProtosOn;
|
|
static BIT_VECTOR PrunedProtos;
|
|
static BIT_VECTOR AllConfigsOn;
|
|
static BIT_VECTOR AllProtosOff;
|
|
static BIT_VECTOR AllConfigsOff;
|
|
static BIT_VECTOR TempProtoMask;
|
|
|
|
/* define control knobs for adaptive matcher */
|
|
make_toggle_const(EnableAdaptiveMatcher, 1, MakeEnableAdaptiveMatcher);
|
|
/* PREV DEFAULT 0 */
|
|
|
|
make_toggle_const(UsePreAdaptedTemplates, 0, MakeUsePreAdaptedTemplates);
|
|
make_toggle_const(SaveAdaptedTemplates, 0, MakeSaveAdaptedTemplates);
|
|
|
|
make_toggle_var(EnableAdaptiveDebugger, 0, MakeEnableAdaptiveDebugger,
|
|
18, 1, SetEnableAdaptiveDebugger, "Enable match debugger");
|
|
|
|
make_int_var(MatcherDebugLevel, 0, MakeMatcherDebugLevel,
|
|
18, 2, SetMatcherDebugLevel, "Matcher Debug Level: ");
|
|
|
|
make_int_var(MatchDebugFlags, 0, MakeMatchDebugFlags,
|
|
18, 3, SetMatchDebugFlags, "Matcher Debug Flags: ");
|
|
|
|
make_toggle_var(EnableLearning, 1, MakeEnableLearning,
|
|
18, 4, SetEnableLearning, "Enable learning");
|
|
/* PREV DEFAULT 0 */
|
|
/*record it for multiple pages */
|
|
static int old_enable_learning = 1;
|
|
|
|
make_int_var(LearningDebugLevel, 0, MakeLearningDebugLevel,
|
|
18, 5, SetLearningDebugLevel, "Learning Debug Level: ");
|
|
|
|
make_float_var(GoodAdaptiveMatch, 0.125, MakeGoodAdaptiveMatch,
|
|
18, 6, SetGoodAdaptiveMatch, "Good Match (0-1): ");
|
|
|
|
make_float_var(GreatAdaptiveMatch, 0.0, MakeGreatAdaptiveMatch,
|
|
18, 7, SetGreatAdaptiveMatch, "Great Match (0-1): ");
|
|
/* PREV DEFAULT 0.10 */
|
|
|
|
make_float_var(PerfectRating, 0.02, MakePerfectRating,
|
|
18, 8, SetPerfectRating, "Perfect Match (0-1): ");
|
|
|
|
make_float_var(BadMatchPad, 0.15, MakeBadMatchPad,
|
|
18, 9, SetBadMatchPad, "Bad Match Pad (0-1): ");
|
|
|
|
make_float_var(RatingMargin, 0.1, MakeRatingMargin,
|
|
18, 10, SetRatingMargin, "New template margin (0-1): ");
|
|
|
|
make_float_var(NoiseBlobLength, 12.0, MakeNoiseBlobLength,
|
|
18, 11, SetNoiseBlobLength, "Avg. noise blob length: ");
|
|
|
|
make_int_var(MinNumPermClasses, 1, MakeMinNumPermClasses,
|
|
18, 12, SetMinNumPermClasses, "Min # of permanent classes: ");
|
|
/* PREV DEFAULT 200 */
|
|
|
|
make_int_var(ReliableConfigThreshold, 2, MakeReliableConfigThreshold,
|
|
18, 13, SetReliableConfigThreshold,
|
|
"Reliable Config Threshold: ");
|
|
|
|
make_float_var(MaxAngleDelta, 0.015, MakeMaxAngleDelta,
|
|
18, 14, SetMaxAngleDelta,
|
|
"Maximum angle delta for proto clustering: ");
|
|
|
|
make_toggle_var(EnableIntFX, 1, MakeEnableIntFX,
|
|
18, 15, SetEnableIntFX, "Enable integer fx");
|
|
/* PREV DEFAULT 0 */
|
|
|
|
make_toggle_var(EnableNewAdaptRules, 1, MakeEnableNewAdaptRules,
|
|
18, 16, SetEnableNewAdaptRules,
|
|
"Enable new adaptation rules");
|
|
/* PREV DEFAULT 0 */
|
|
|
|
make_float_var(RatingScale, 1.5, MakeRatingScale,
|
|
18, 17, SetRatingScale, "Rating scale: ");
|
|
|
|
make_float_var(CertaintyScale, 20.0, MakeCertaintyScale,
|
|
18, 18, SetCertaintyScale, "CertaintyScale: ");
|
|
|
|
make_int_var(FailedAdaptionsBeforeReset, 150, MakeFailedAdaptionsBeforeReset,
|
|
18, 19, SetFailedAdaptionsBeforeReset,
|
|
"Number of failed adaptions before adapted templates reset: ");
|
|
double_VAR(tessedit_class_miss_scale, 0.00390625,
|
|
"Scale factor for features not used");
|
|
|
|
int tess_cn_matching = 0;
|
|
int tess_bn_matching = 0;
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Public Code
|
|
----------------------------------------------------------------------------**/
|
|
/*---------------------------------------------------------------------------*/
|
|
LIST AdaptiveClassifier(TBLOB *Blob, TBLOB *DotBlob, TEXTROW *Row) {
|
|
/*
|
|
** Parameters:
|
|
** Blob blob to be classified
|
|
** DotBlob (obsolete)
|
|
** Row row of text that word appears in
|
|
** Globals:
|
|
** CurrentRatings
|
|
used by compare function for qsort
|
|
** Operation: This routine calls the adaptive matcher which returns
|
|
** (in an array) the class id of each class matched. It also
|
|
** returns the number of classes matched.
|
|
** For each class matched it places the best rating
|
|
** found for that class into the Ratings array.
|
|
** Bad matches are then removed so that they don't need to be
|
|
** sorted. The remaining good matches are then sorted and
|
|
** converted to choices.
|
|
** This routine also performs some simple speckle filtering.
|
|
** Return: List of choices found by adaptive matcher.
|
|
** Exceptions: none
|
|
** History: Mon Mar 11 10:00:58 1991, DSJ, Created.
|
|
*/
|
|
LIST Choices;
|
|
ADAPT_RESULTS* Results = new ADAPT_RESULTS;
|
|
LINE_STATS LineStats;
|
|
|
|
if (FailedAdaptionsBeforeReset >= 0 &&
|
|
NumAdaptationsFailed >= FailedAdaptionsBeforeReset) {
|
|
NumAdaptationsFailed = 0;
|
|
ResetAdaptiveClassifier();
|
|
}
|
|
if (AdaptedTemplates == NULL)
|
|
AdaptedTemplates = NewAdaptedTemplates ();
|
|
EnterClassifyMode;
|
|
|
|
Results->BlobLength = MAX_INT32;
|
|
Results->NumMatches = 0;
|
|
Results->BestRating = WORST_POSSIBLE_RATING;
|
|
Results->BestClass = NO_CLASS;
|
|
Results->BestConfig = 0;
|
|
GetLineStatsFromRow(Row, &LineStats);
|
|
InitMatcherRatings (Results->Ratings);
|
|
|
|
DoAdaptiveMatch(Blob, &LineStats, Results);
|
|
RemoveBadMatches(Results);
|
|
|
|
/* save ratings in a global so that CompareCurrentRatings() can see them */
|
|
CurrentRatings = Results->Ratings;
|
|
qsort((void*) (Results->Classes), Results->NumMatches,
|
|
sizeof (CLASS_ID), CompareCurrentRatings);
|
|
RemoveExtraPuncs(Results);
|
|
Choices = ConvertMatchesToChoices(Results);
|
|
|
|
if (MatcherDebugLevel >= 1) {
|
|
cprintf ("AD Matches = ");
|
|
PrintAdaptiveMatchResults(stdout, Results);
|
|
}
|
|
|
|
if (LargeSpeckle (Blob, Row))
|
|
Choices = AddLargeSpeckleTo (Choices);
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (EnableAdaptiveDebugger)
|
|
DebugAdaptiveClassifier(Blob, &LineStats, Results);
|
|
#endif
|
|
|
|
NumClassesOutput += count (Choices);
|
|
if (Choices == NIL) {
|
|
char empty_lengths[] = {0};
|
|
if (!bln_numericmode)
|
|
tprintf ("Nil classification!\n"); // Should never normally happen.
|
|
return (append_choice (NIL, "", empty_lengths, 50.0f, -20.0f, -1));
|
|
}
|
|
|
|
delete Results;
|
|
return Choices;
|
|
} /* AdaptiveClassifier */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void AdaptToWord(TWERD *Word,
|
|
TEXTROW *Row,
|
|
const WERD_CHOICE& BestChoice,
|
|
const WERD_CHOICE& BestRawChoice,
|
|
const char *rejmap) {
|
|
/*
|
|
** Parameters:
|
|
** Word
|
|
word to be adapted to
|
|
** Row
|
|
row of text that word is found in
|
|
** BestChoice
|
|
best choice for word found by system
|
|
** BestRawChoice
|
|
best choice for word found by classifier only
|
|
** Globals:
|
|
** EnableLearning
|
|
TRUE if learning is enabled
|
|
** Operation: This routine implements a preliminary version of the
|
|
** rules which are used to decide which characters to adapt to.
|
|
** A word is adapted to if it is in the dictionary or if it
|
|
** is a "good" number (no trailing units, etc.). It cannot
|
|
** contain broken or merged characters. Within that word, only
|
|
** letters and digits are adapted to (no punctuation).
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Thu Mar 14 07:40:36 1991, DSJ, Created.
|
|
*/
|
|
TBLOB *Blob;
|
|
LINE_STATS LineStats;
|
|
FLOAT32 Thresholds[MAX_ADAPTABLE_WERD_SIZE];
|
|
FLOAT32 *Threshold;
|
|
const char *map = rejmap;
|
|
char map_char = '1';
|
|
const char* BestChoice_string = BestChoice.string().string();
|
|
const char* BestChoice_lengths = BestChoice.lengths().string();
|
|
|
|
if (strlen(BestChoice_lengths) > MAX_ADAPTABLE_WERD_SIZE)
|
|
return;
|
|
|
|
if (EnableLearning) {
|
|
NumWordsAdaptedTo++;
|
|
|
|
#ifndef SECURE_NAMES
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("\n\nAdapting to word = %s\n", BestChoice.string().string());
|
|
#endif
|
|
GetLineStatsFromRow(Row, &LineStats);
|
|
|
|
GetAdaptThresholds(Word,
|
|
&LineStats,
|
|
BestChoice,
|
|
BestRawChoice,
|
|
Thresholds);
|
|
|
|
for (Blob = Word->blobs, Threshold = Thresholds; Blob != NULL;
|
|
Blob = Blob->next, BestChoice_string += *(BestChoice_lengths++),
|
|
Threshold++) {
|
|
InitIntFX();
|
|
|
|
if (rejmap != NULL)
|
|
map_char = *map++;
|
|
|
|
assert (map_char == '1' || map_char == '0');
|
|
|
|
if (map_char == '1') {
|
|
|
|
// if (unicharset.get_isalpha (BestChoice_string, *BestChoice_lengths) ||
|
|
// unicharset.get_isdigit (BestChoice_string, *BestChoice_lengths)) {
|
|
/* SPECIAL RULE: don't adapt to an 'i' which is the first char
|
|
in a word because they are too ambiguous with 'I'.
|
|
The new adaptation rules should account for this
|
|
automatically, since they exclude ambiguous words from
|
|
adaptation, but for safety's sake we'll leave the rule in.
|
|
Also, don't adapt to i's that have only 1 blob in them
|
|
because this creates too much ambiguity for broken
|
|
characters. */
|
|
if (*BestChoice_lengths == 1 &&
|
|
(*BestChoice_string == 'i'
|
|
|| (il1_adaption_test && *BestChoice_string == 'I' &&
|
|
(Blob->next == NULL ||
|
|
unicharset.get_islower (BestChoice_string + *BestChoice_lengths,
|
|
*(BestChoice_lengths + 1)))))
|
|
&& (Blob == Word->blobs
|
|
|| (!(unicharset.get_isalpha (BestChoice_string -
|
|
*(BestChoice_lengths - 1),
|
|
*(BestChoice_lengths - 1)) ||
|
|
unicharset.get_isdigit (BestChoice_string -
|
|
*(BestChoice_lengths - 1),
|
|
*(BestChoice_lengths - 1))))
|
|
|
|
|| (!il1_adaption_test && NumOutlinesInBlob(Blob) != 2))) {
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Rejecting char = %s\n", unicharset.id_to_unichar(
|
|
unicharset.unichar_to_id(BestChoice_string,
|
|
*BestChoice_lengths)));
|
|
}
|
|
else {
|
|
#ifndef SECURE_NAMES
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Adapting to char = %s, thr= %g\n",
|
|
unicharset.id_to_unichar(
|
|
unicharset.unichar_to_id(BestChoice_string,
|
|
*BestChoice_lengths)),
|
|
*Threshold);
|
|
#endif
|
|
AdaptToChar(Blob, &LineStats,
|
|
unicharset.unichar_to_id(BestChoice_string,
|
|
*BestChoice_lengths),
|
|
*Threshold);
|
|
}
|
|
// }
|
|
// else
|
|
// AdaptToPunc(Blob, &LineStats,
|
|
// unicharset.unichar_to_id(BestChoice_string,
|
|
// *BestChoice_lengths),
|
|
// *Threshold);
|
|
}
|
|
}
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("\n");
|
|
}
|
|
} /* AdaptToWord */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void EndAdaptiveClassifier() {
|
|
/*
|
|
** Parameters: none
|
|
** Globals:
|
|
** AdaptedTemplates
|
|
current set of adapted templates
|
|
** SaveAdaptedTemplates
|
|
TRUE if templates should be saved
|
|
** EnableAdaptiveMatcher
|
|
TRUE if adaptive matcher is enabled
|
|
** Operation: This routine performs cleanup operations on the
|
|
** adaptive classifier. It should be called before the
|
|
** program is terminated. Its main function is to save
|
|
** the adapted templates to a file.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 19 14:37:06 1991, DSJ, Created.
|
|
*/
|
|
char Filename[256];
|
|
FILE *File;
|
|
|
|
#ifndef SECURE_NAMES
|
|
if (EnableAdaptiveMatcher && SaveAdaptedTemplates) {
|
|
strcpy(Filename, imagefile);
|
|
strcat(Filename, ADAPT_TEMPLATE_SUFFIX);
|
|
File = fopen (Filename, "wb");
|
|
if (File == NULL)
|
|
cprintf ("Unable to save adapted templates to %s!\n", Filename);
|
|
else {
|
|
cprintf ("\nSaving adapted templates to %s ...", Filename);
|
|
fflush(stdout);
|
|
WriteAdaptedTemplates(File, AdaptedTemplates);
|
|
cprintf ("\n");
|
|
fclose(File);
|
|
}
|
|
}
|
|
#endif
|
|
if (PreTrainedTemplates == NULL)
|
|
return; // This function isn't safe to run twice.
|
|
EndDangerousAmbigs();
|
|
FreeNormProtos();
|
|
free_int_templates(PreTrainedTemplates);
|
|
PreTrainedTemplates = NULL;
|
|
FreeBitVector(AllProtosOn);
|
|
FreeBitVector(PrunedProtos);
|
|
FreeBitVector(AllConfigsOn);
|
|
FreeBitVector(AllProtosOff);
|
|
FreeBitVector(AllConfigsOff);
|
|
FreeBitVector(TempProtoMask);
|
|
AllProtosOn = NULL;
|
|
PrunedProtos = NULL;
|
|
AllConfigsOn = NULL;
|
|
AllProtosOff = NULL;
|
|
AllConfigsOff = NULL;
|
|
TempProtoMask = NULL;
|
|
} /* EndAdaptiveClassifier */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void InitAdaptiveClassifier() {
|
|
/*
|
|
** Parameters: none
|
|
** Globals:
|
|
** BuiltInTemplatesFile
|
|
file to get built-in temps from
|
|
** BuiltInCutoffsFile
|
|
file to get avg. feat per class from
|
|
** PreTrainedTemplates
|
|
pre-trained configs and protos
|
|
** AdaptedTemplates
|
|
templates adapted to current page
|
|
** CharNormCutoffs
|
|
avg # of features per class
|
|
** AllProtosOn
|
|
dummy proto mask with all bits 1
|
|
** AllConfigsOn
|
|
dummy config mask with all bits 1
|
|
** UsePreAdaptedTemplates
|
|
enables use of pre-adapted templates
|
|
** Operation: This routine reads in the training information needed
|
|
** by the adaptive classifier and saves it into global
|
|
** variables.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Mon Mar 11 12:49:34 1991, DSJ, Created.
|
|
*/
|
|
int i;
|
|
FILE *File;
|
|
STRING Filename;
|
|
|
|
if (!EnableAdaptiveMatcher)
|
|
return;
|
|
if (PreTrainedTemplates != NULL)
|
|
EndAdaptiveClassifier(); // Don't leak with multiple inits.
|
|
|
|
Filename = language_data_path_prefix;
|
|
Filename += BuiltInTemplatesFile;
|
|
#ifndef SECURE_NAMES
|
|
// cprintf( "\nReading built-in templates from %s ...",
|
|
// Filename);
|
|
fflush(stdout);
|
|
#endif
|
|
|
|
#ifdef __UNIX__
|
|
File = Efopen (Filename.string(), "r");
|
|
#else
|
|
File = Efopen (Filename.string(), "rb");
|
|
#endif
|
|
PreTrainedTemplates = ReadIntTemplates (File, TRUE);
|
|
fclose(File);
|
|
|
|
Filename = language_data_path_prefix;
|
|
Filename += BuiltInCutoffsFile;
|
|
#ifndef SECURE_NAMES
|
|
// cprintf( "\nReading built-in pico-feature cutoffs from %s ...",
|
|
// Filename);
|
|
fflush(stdout);
|
|
#endif
|
|
ReadNewCutoffs (Filename.string(), PreTrainedTemplates->IndexFor,
|
|
CharNormCutoffs);
|
|
|
|
GetNormProtos();
|
|
|
|
InitIntegerMatcher();
|
|
InitIntegerFX();
|
|
|
|
AllProtosOn = NewBitVector(MAX_NUM_PROTOS);
|
|
PrunedProtos = NewBitVector(MAX_NUM_PROTOS);
|
|
AllConfigsOn = NewBitVector(MAX_NUM_CONFIGS);
|
|
AllProtosOff = NewBitVector(MAX_NUM_PROTOS);
|
|
AllConfigsOff = NewBitVector(MAX_NUM_CONFIGS);
|
|
TempProtoMask = NewBitVector(MAX_NUM_PROTOS);
|
|
set_all_bits(AllProtosOn, WordsInVectorOfSize(MAX_NUM_PROTOS));
|
|
set_all_bits(PrunedProtos, WordsInVectorOfSize(MAX_NUM_PROTOS));
|
|
set_all_bits(AllConfigsOn, WordsInVectorOfSize(MAX_NUM_CONFIGS));
|
|
zero_all_bits(AllProtosOff, WordsInVectorOfSize(MAX_NUM_PROTOS));
|
|
zero_all_bits(AllConfigsOff, WordsInVectorOfSize(MAX_NUM_CONFIGS));
|
|
|
|
if (UsePreAdaptedTemplates) {
|
|
Filename = imagefile;
|
|
Filename += ADAPT_TEMPLATE_SUFFIX;
|
|
File = fopen (Filename.string(), "rb");
|
|
if (File == NULL)
|
|
AdaptedTemplates = NewAdaptedTemplates ();
|
|
else {
|
|
#ifndef SECURE_NAMES
|
|
cprintf ("\nReading pre-adapted templates from %s ...", Filename.string());
|
|
fflush(stdout);
|
|
#endif
|
|
AdaptedTemplates = ReadAdaptedTemplates (File);
|
|
cprintf ("\n");
|
|
fclose(File);
|
|
PrintAdaptedTemplates(stdout, AdaptedTemplates);
|
|
|
|
for (i = 0; i < (AdaptedTemplates->Templates)->NumClasses; i++) {
|
|
BaselineCutoffs[i] =
|
|
CharNormCutoffs[PreTrainedTemplates->IndexFor[
|
|
AdaptedTemplates->Templates->ClassIdFor[i]]];
|
|
}
|
|
}
|
|
} else {
|
|
if (AdaptedTemplates != NULL)
|
|
free_adapted_templates(AdaptedTemplates);
|
|
AdaptedTemplates = NewAdaptedTemplates ();
|
|
}
|
|
old_enable_learning = EnableLearning;
|
|
|
|
} /* InitAdaptiveClassifier */
|
|
|
|
void ResetAdaptiveClassifier() {
|
|
free_adapted_templates(AdaptedTemplates);
|
|
AdaptedTemplates = NULL;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void InitAdaptiveClassifierVars() {
|
|
/*
|
|
** Parameters: none
|
|
** Globals: none
|
|
** Operation: This routine installs the control knobs used by the
|
|
** adaptive matcher.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Mon Mar 11 12:49:34 1991, DSJ, Created.
|
|
*/
|
|
VALUE dummy;
|
|
|
|
string_variable (BuiltInTemplatesFile, "BuiltInTemplatesFile",
|
|
BUILT_IN_TEMPLATES_FILE);
|
|
string_variable (BuiltInCutoffsFile, "BuiltInCutoffsFile",
|
|
BUILT_IN_CUTOFFS_FILE);
|
|
|
|
MakeEnableAdaptiveMatcher();
|
|
MakeUsePreAdaptedTemplates();
|
|
MakeSaveAdaptedTemplates();
|
|
|
|
MakeEnableLearning();
|
|
MakeEnableAdaptiveDebugger();
|
|
MakeBadMatchPad();
|
|
MakeGoodAdaptiveMatch();
|
|
MakeGreatAdaptiveMatch();
|
|
MakeNoiseBlobLength();
|
|
MakeMinNumPermClasses();
|
|
MakeReliableConfigThreshold();
|
|
MakeMaxAngleDelta();
|
|
MakeLearningDebugLevel();
|
|
MakeMatcherDebugLevel();
|
|
MakeMatchDebugFlags();
|
|
MakeRatingMargin();
|
|
MakePerfectRating();
|
|
MakeEnableIntFX();
|
|
MakeEnableNewAdaptRules();
|
|
MakeRatingScale();
|
|
MakeCertaintyScale();
|
|
MakeFailedAdaptionsBeforeReset();
|
|
|
|
InitPicoFXVars();
|
|
InitOutlineFXVars(); //?
|
|
|
|
} /* InitAdaptiveClassifierVars */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void PrintAdaptiveStatistics(FILE *File) {
|
|
/*
|
|
** Parameters:
|
|
** File
|
|
open text file to print adaptive statistics to
|
|
** Globals: none
|
|
** Operation: Print to File the statistics which have been gathered
|
|
** for the adaptive matcher.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Thu Apr 18 14:37:37 1991, DSJ, Created.
|
|
*/
|
|
#ifndef SECURE_NAMES
|
|
|
|
fprintf (File, "\nADAPTIVE MATCHER STATISTICS:\n");
|
|
fprintf (File, "\tNum blobs classified = %d\n", AdaptiveMatcherCalls);
|
|
fprintf (File, "\tNum classes output = %d (Avg = %4.2f)\n",
|
|
NumClassesOutput,
|
|
((AdaptiveMatcherCalls == 0) ? (0.0) :
|
|
((float) NumClassesOutput / AdaptiveMatcherCalls)));
|
|
fprintf (File, "\t\tBaseline Classifier: %4d calls (%4.2f classes/call)\n",
|
|
BaselineClassifierCalls,
|
|
((BaselineClassifierCalls == 0) ? (0.0) :
|
|
((float) NumBaselineClassesTried / BaselineClassifierCalls)));
|
|
fprintf (File, "\t\tCharNorm Classifier: %4d calls (%4.2f classes/call)\n",
|
|
CharNormClassifierCalls,
|
|
((CharNormClassifierCalls == 0) ? (0.0) :
|
|
((float) NumCharNormClassesTried / CharNormClassifierCalls)));
|
|
fprintf (File, "\t\tAmbig Classifier: %4d calls (%4.2f classes/call)\n",
|
|
AmbigClassifierCalls,
|
|
((AmbigClassifierCalls == 0) ? (0.0) :
|
|
((float) NumAmbigClassesTried / AmbigClassifierCalls)));
|
|
|
|
fprintf (File, "\nADAPTIVE LEARNER STATISTICS:\n");
|
|
fprintf (File, "\tNumber of words adapted to: %d\n", NumWordsAdaptedTo);
|
|
fprintf (File, "\tNumber of chars adapted to: %d\n", NumCharsAdaptedTo);
|
|
|
|
if (UsePreAdaptedTemplates)
|
|
PrintAdaptedTemplates(File, AdaptedTemplates);
|
|
#endif
|
|
} /* PrintAdaptiveStatistics */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void SettupPass1() {
|
|
/*
|
|
** Parameters: none
|
|
** Globals:
|
|
** EnableLearning
|
|
set to TRUE by this routine
|
|
** Operation: This routine prepares the adaptive matcher for the start
|
|
** of the first pass. Learning is enabled (unless it is
|
|
** disabled for the whole program).
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Mon Apr 15 16:39:29 1991, DSJ, Created.
|
|
*/
|
|
/* Note: this is somewhat redundant, it simply says that if learning is
|
|
enabled then it will remain enabled on the first pass. If it is
|
|
disabled, then it will remain disabled. This is only put here to
|
|
make it very clear that learning is controlled directly by the global
|
|
setting of EnableLearning. */
|
|
EnableLearning = old_enable_learning;
|
|
|
|
SettupStopperPass1();
|
|
|
|
} /* SettupPass1 */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void SettupPass2() {
|
|
/*
|
|
** Parameters: none
|
|
** Globals:
|
|
** EnableLearning
|
|
set to FALSE by this routine
|
|
** Operation: This routine prepares the adaptive matcher for the start
|
|
** of the second pass. Further learning is disabled.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Mon Apr 15 16:39:29 1991, DSJ, Created.
|
|
*/
|
|
EnableLearning = FALSE;
|
|
SettupStopperPass2();
|
|
|
|
} /* SettupPass2 */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void MakeNewAdaptedClass(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID ClassId,
|
|
ADAPT_TEMPLATES Templates) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to model new class after
|
|
** LineStats
|
|
statistics for text row blob is in
|
|
** ClassId
|
|
id of new class to be created
|
|
** Templates
|
|
adapted templates to add new class to
|
|
** Globals:
|
|
** AllProtosOn
|
|
dummy mask with all 1's
|
|
** BaselineCutoffs
|
|
kludge needed to get cutoffs
|
|
** PreTrainedTemplates
|
|
kludge needed to get cutoffs
|
|
** Operation: This routine creates a new adapted class and uses Blob
|
|
** as the model for the first config in that class.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Thu Mar 14 12:49:39 1991, DSJ, Created.
|
|
*/
|
|
FEATURE_SET Features;
|
|
int Fid, Pid;
|
|
FEATURE Feature;
|
|
int NumFeatures;
|
|
TEMP_PROTO TempProto;
|
|
PROTO Proto;
|
|
ADAPT_CLASS Class;
|
|
INT_CLASS IClass;
|
|
CLASS_INDEX ClassIndex;
|
|
TEMP_CONFIG Config;
|
|
|
|
NormMethod = baseline;
|
|
Features = ExtractOutlineFeatures (Blob, LineStats);
|
|
NumFeatures = Features->NumFeatures;
|
|
if (NumFeatures > UNLIKELY_NUM_FEAT) {
|
|
FreeFeatureSet(Features);
|
|
return;
|
|
}
|
|
|
|
Class = NewAdaptedClass ();
|
|
ClassIndex = AddAdaptedClass (Templates, Class, ClassId);
|
|
Config = NewTempConfig (NumFeatures - 1);
|
|
TempConfigFor (Class, 0) = Config;
|
|
|
|
/* this is a kludge to construct cutoffs for adapted templates */
|
|
if (Templates == AdaptedTemplates)
|
|
BaselineCutoffs[ClassIndex] =
|
|
CharNormCutoffs[PreTrainedTemplates->IndexFor[ClassId]];
|
|
|
|
IClass = ClassForClassId (Templates->Templates, ClassId);
|
|
|
|
for (Fid = 0; Fid < Features->NumFeatures; Fid++) {
|
|
Pid = AddIntProto (IClass);
|
|
assert (Pid != NO_PROTO);
|
|
|
|
Feature = Features->Features[Fid];
|
|
TempProto = NewTempProto ();
|
|
Proto = &(TempProto->Proto);
|
|
|
|
/* compute proto params - NOTE that Y_DIM_OFFSET must be used because
|
|
ConvertProto assumes that the Y dimension varies from -0.5 to 0.5
|
|
instead of the -0.25 to 0.75 used in baseline normalization */
|
|
Proto->Angle = Feature->Params[OutlineFeatDir];
|
|
Proto->X = Feature->Params[OutlineFeatX];
|
|
Proto->Y = Feature->Params[OutlineFeatY] - Y_DIM_OFFSET;
|
|
Proto->Length = Feature->Params[OutlineFeatLength];
|
|
FillABC(Proto);
|
|
|
|
TempProto->ProtoId = Pid;
|
|
SET_BIT (Config->Protos, Pid);
|
|
|
|
ConvertProto(Proto, Pid, IClass);
|
|
AddProtoToProtoPruner(Proto, Pid, IClass);
|
|
|
|
Class->TempProtos = push (Class->TempProtos, TempProto);
|
|
}
|
|
FreeFeatureSet(Features);
|
|
|
|
AddIntConfig(IClass);
|
|
ConvertConfig (AllProtosOn, 0, IClass);
|
|
|
|
if (LearningDebugLevel >= 1) {
|
|
cprintf ("Added new class '%s' with index %d and %d protos.\n",
|
|
unicharset.id_to_unichar(ClassId), ClassIndex, NumFeatures);
|
|
}
|
|
} /* MakeNewAdaptedClass */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int GetAdaptiveFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
FEATURE_SET *FloatFeatures) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to extract features from
|
|
** LineStats
|
|
statistics about text row blob is in
|
|
** IntFeatures
|
|
array to fill with integer features
|
|
** FloatFeatures
|
|
place to return actual floating-pt features
|
|
** Globals: none
|
|
** Operation: This routine sets up the feature extractor to extract
|
|
** baseline normalized pico-features.
|
|
** The extracted pico-features are converted
|
|
** to integer form and placed in IntFeatures. The original
|
|
** floating-pt. features are returned in FloatFeatures.
|
|
** Return: Number of pico-features returned (0 if an error occurred)
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 17:55:18 1991, DSJ, Created.
|
|
*/
|
|
FEATURE_SET Features;
|
|
int NumFeatures;
|
|
|
|
NormMethod = baseline;
|
|
Features = ExtractPicoFeatures (Blob, LineStats);
|
|
|
|
NumFeatures = Features->NumFeatures;
|
|
if (NumFeatures > UNLIKELY_NUM_FEAT) {
|
|
FreeFeatureSet(Features);
|
|
return (0);
|
|
}
|
|
|
|
ComputeIntFeatures(Features, IntFeatures);
|
|
*FloatFeatures = Features;
|
|
|
|
return (NumFeatures);
|
|
|
|
} /* GetAdaptiveFeatures */
|
|
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Private Code
|
|
----------------------------------------------------------------------------**/
|
|
/*---------------------------------------------------------------------------*/
|
|
int AdaptableWord(TWERD *Word,
|
|
const char *BestChoice,
|
|
const char *BestChoice_lengths,
|
|
const char *BestRawChoice,
|
|
const char *BestRawChoice_lengths) {
|
|
/*
|
|
** Parameters:
|
|
** Word
|
|
current word
|
|
** BestChoice
|
|
best overall choice for word with context
|
|
** BestRawChoice
|
|
best choice for word without context
|
|
** Globals: none
|
|
** Operation: Return TRUE if the specified word is acceptable for
|
|
** adaptation.
|
|
** Return: TRUE or FALSE
|
|
** Exceptions: none
|
|
** History: Thu May 30 14:25:06 1991, DSJ, Created.
|
|
*/
|
|
int BestChoiceLength;
|
|
|
|
return ( /* rules that apply in general - simplest to compute first */
|
|
/* EnableLearning && */
|
|
/* new rules */
|
|
BestChoice != NULL && BestRawChoice != NULL && Word != NULL &&
|
|
(BestChoiceLength = strlen (BestChoice_lengths)) > 0 &&
|
|
BestChoiceLength == NumBlobsIn (Word) &&
|
|
BestChoiceLength <= MAX_ADAPTABLE_WERD_SIZE && (
|
|
(EnableNewAdaptRules
|
|
&&
|
|
CurrentBestChoiceAdjustFactor
|
|
()
|
|
<=
|
|
ADAPTABLE_WERD
|
|
&&
|
|
AlternativeChoicesWorseThan
|
|
(ADAPTABLE_WERD)
|
|
&&
|
|
CurrentBestChoiceIs
|
|
(BestChoice, BestChoice_lengths))
|
|
||
|
|
/* old rules */
|
|
(!EnableNewAdaptRules
|
|
&&
|
|
BestChoiceLength
|
|
==
|
|
strlen
|
|
(BestRawChoice_lengths)
|
|
&&
|
|
((valid_word (BestChoice) && case_ok (BestChoice, BestChoice_lengths)) || (valid_number (BestChoice, BestChoice_lengths) && pure_number (BestChoice, BestChoice_lengths))) && punctuation_ok (BestChoice, BestChoice_lengths) != -1 && punctuation_ok (BestChoice, BestChoice_lengths) <= 1)));
|
|
|
|
} /* AdaptableWord */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void AdaptToChar(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID ClassId,
|
|
FLOAT32 Threshold) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to add to templates for ClassId
|
|
** LineStats
|
|
statistics about text line blob is in
|
|
** ClassId
|
|
class to add blob to
|
|
** Threshold
|
|
minimum match rating to existing template
|
|
** Globals:
|
|
** AdaptedTemplates
|
|
current set of adapted templates
|
|
** AllProtosOn
|
|
dummy mask to match against all protos
|
|
** AllConfigsOn
|
|
dummy mask to match against all configs
|
|
** Operation:
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Thu Mar 14 09:36:03 1991, DSJ, Created.
|
|
*/
|
|
int NumFeatures;
|
|
INT_FEATURE_ARRAY IntFeatures;
|
|
INT_RESULT_STRUCT IntResult;
|
|
CLASS_INDEX ClassIndex;
|
|
INT_CLASS IClass;
|
|
ADAPT_CLASS Class;
|
|
TEMP_CONFIG TempConfig;
|
|
FEATURE_SET FloatFeatures;
|
|
int NewTempConfigId;
|
|
|
|
NumCharsAdaptedTo++;
|
|
if (!LegalClassId (ClassId))
|
|
return;
|
|
|
|
if (UnusedClassIdIn (AdaptedTemplates->Templates, ClassId)) {
|
|
MakeNewAdaptedClass(Blob, LineStats, ClassId, AdaptedTemplates);
|
|
}
|
|
else {
|
|
IClass = ClassForClassId (AdaptedTemplates->Templates, ClassId);
|
|
ClassIndex = AdaptedTemplates->Templates->IndexFor[ClassId];
|
|
Class = AdaptedTemplates->Class[ClassIndex];
|
|
|
|
NumFeatures = GetAdaptiveFeatures (Blob, LineStats,
|
|
IntFeatures, &FloatFeatures);
|
|
if (NumFeatures <= 0)
|
|
return;
|
|
|
|
SetBaseLineMatch();
|
|
IntegerMatcher (IClass, AllProtosOn, AllConfigsOn,
|
|
NumFeatures, NumFeatures, IntFeatures, 0,
|
|
&IntResult, NO_DEBUG);
|
|
|
|
SetAdaptiveThreshold(Threshold);
|
|
|
|
if (IntResult.Rating <= Threshold) {
|
|
if (ConfigIsPermanent (Class, IntResult.Config)) {
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Found good match to perm config %d = %4.1f%%.\n",
|
|
IntResult.Config, (1.0 - IntResult.Rating) * 100.0);
|
|
FreeFeatureSet(FloatFeatures);
|
|
return;
|
|
}
|
|
|
|
TempConfig = TempConfigFor (Class, IntResult.Config);
|
|
IncreaseConfidence(TempConfig);
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Increasing reliability of temp config %d to %d.\n",
|
|
IntResult.Config, TempConfig->NumTimesSeen);
|
|
|
|
if (TempConfigReliable (TempConfig))
|
|
MakePermanent (AdaptedTemplates, ClassId, IntResult.Config,
|
|
Blob, LineStats);
|
|
}
|
|
else {
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Found poor match to temp config %d = %4.1f%%.\n",
|
|
IntResult.Config, (1.0 - IntResult.Rating) * 100.0);
|
|
NewTempConfigId = MakeNewTemporaryConfig(AdaptedTemplates,
|
|
ClassId,
|
|
NumFeatures,
|
|
IntFeatures,
|
|
FloatFeatures);
|
|
|
|
if (NewTempConfigId >= 0 &&
|
|
TempConfigReliable (TempConfigFor (Class, NewTempConfigId)))
|
|
MakePermanent (AdaptedTemplates, ClassId, NewTempConfigId,
|
|
Blob, LineStats);
|
|
|
|
if (LearningDebugLevel >= 1) {
|
|
IntegerMatcher (IClass, AllProtosOn, AllConfigsOn,
|
|
NumFeatures, NumFeatures, IntFeatures, 0,
|
|
&IntResult, NO_DEBUG);
|
|
cprintf ("Best match to temp config %d = %4.1f%%.\n",
|
|
IntResult.Config, (1.0 - IntResult.Rating) * 100.0);
|
|
if (LearningDebugLevel >= 2) {
|
|
uinT32 ConfigMask;
|
|
ConfigMask = 1 << IntResult.Config;
|
|
ShowMatchDisplay();
|
|
IntegerMatcher (IClass, AllProtosOn, (BIT_VECTOR)&ConfigMask,
|
|
NumFeatures, NumFeatures, IntFeatures, 0,
|
|
&IntResult, 6 | 0x19);
|
|
UpdateMatchDisplay();
|
|
GetClassToDebug ("Adapting");
|
|
}
|
|
}
|
|
}
|
|
FreeFeatureSet(FloatFeatures);
|
|
}
|
|
} /* AdaptToChar */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void AdaptToPunc(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID ClassId,
|
|
FLOAT32 Threshold) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to add to templates for ClassId
|
|
** LineStats
|
|
statistics about text line blob is in
|
|
** ClassId
|
|
class to add blob to
|
|
** Threshold
|
|
minimum match rating to existing template
|
|
** Globals:
|
|
** PreTrainedTemplates
|
|
current set of built-in templates
|
|
** Operation:
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Thu Mar 14 09:36:03 1991, DSJ, Created.
|
|
*/
|
|
ADAPT_RESULTS Results;
|
|
int i;
|
|
|
|
Results.BlobLength = MAX_INT32;
|
|
Results.NumMatches = 0;
|
|
Results.BestRating = WORST_POSSIBLE_RATING;
|
|
Results.BestClass = NO_CLASS;
|
|
Results.BestConfig = 0;
|
|
InitMatcherRatings (Results.Ratings);
|
|
CharNormClassifier(Blob, LineStats, PreTrainedTemplates, &Results);
|
|
RemoveBadMatches(&Results);
|
|
|
|
if (Results.NumMatches != 1) {
|
|
if (LearningDebugLevel >= 1) {
|
|
cprintf ("Rejecting punc = %s (Alternatives = ",
|
|
unicharset.id_to_unichar(ClassId));
|
|
|
|
for (i = 0; i < Results.NumMatches; i++)
|
|
cprintf ("%s", unicharset.id_to_unichar(Results.Classes[i]));
|
|
cprintf (")\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
#ifndef SECURE_NAMES
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Adapting to punc = %s, thr= %g\n",
|
|
unicharset.id_to_unichar(ClassId), Threshold);
|
|
#endif
|
|
AdaptToChar(Blob, LineStats, ClassId, Threshold);
|
|
|
|
} /* AdaptToPunc */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void AddNewResult(ADAPT_RESULTS *Results,
|
|
CLASS_ID ClassId,
|
|
FLOAT32 Rating,
|
|
int ConfigId) {
|
|
/*
|
|
** Parameters:
|
|
** Results
|
|
results to add new result to
|
|
** ClassId
|
|
class of new result
|
|
** Rating
|
|
rating of new result
|
|
** ConfigId
|
|
config id of new result
|
|
** Globals:
|
|
** BadMatchPad
|
|
defines limits of an acceptable match
|
|
** Operation: This routine adds the result of a classification into
|
|
** Results. If the new rating is much worse than the current
|
|
** best rating, it is not entered into results because it
|
|
** would end up being stripped later anyway. If the new rating
|
|
** is better than the old rating for the class, it replaces the
|
|
** old rating. If this is the first rating for the class, the
|
|
** class is added to the list of matched classes in Results.
|
|
** If the new rating is better than the best so far, it
|
|
** becomes the best so far.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 18:19:29 1991, DSJ, Created.
|
|
*/
|
|
FLOAT32 OldRating;
|
|
INT_CLASS_STRUCT* CharClass = NULL;
|
|
|
|
OldRating = Results->Ratings[ClassId];
|
|
if (Rating <= Results->BestRating + BadMatchPad && Rating < OldRating) {
|
|
Results->Ratings[ClassId] = Rating;
|
|
if (ClassId != NO_CLASS)
|
|
CharClass = ClassForClassId(PreTrainedTemplates, ClassId);
|
|
if (CharClass != NULL && CharClass->NumConfigs == 32)
|
|
Results->Configs[ClassId] = ConfigId;
|
|
else
|
|
Results->Configs[ClassId] = ~0;
|
|
|
|
if (Rating < Results->BestRating) {
|
|
Results->BestRating = Rating;
|
|
Results->BestClass = ClassId;
|
|
Results->BestConfig = ConfigId;
|
|
}
|
|
|
|
/* if this is first rating for class, add to list of classes matched */
|
|
if (OldRating == WORST_POSSIBLE_RATING)
|
|
Results->Classes[Results->NumMatches++] = ClassId;
|
|
}
|
|
} /* AddNewResult */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void AmbigClassifier(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
UNICHAR_ID *Ambiguities,
|
|
ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to be classified
|
|
** LineStats
|
|
statistics for text line Blob is in
|
|
** Templates
|
|
built-in templates to classify against
|
|
** Ambiguities
|
|
array of class id's to match against
|
|
** Results
|
|
place to put match results
|
|
** Globals:
|
|
** AllProtosOn
|
|
mask that enables all protos
|
|
** AllConfigsOn
|
|
mask that enables all configs
|
|
** Operation: This routine is identical to CharNormClassifier()
|
|
** except that it does no class pruning. It simply matches
|
|
** the unknown blob against the classes listed in
|
|
** Ambiguities.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 19:40:36 1991, DSJ, Created.
|
|
*/
|
|
int NumFeatures;
|
|
INT_FEATURE_ARRAY IntFeatures;
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray;
|
|
INT_RESULT_STRUCT IntResult;
|
|
CLASS_ID ClassId;
|
|
CLASS_INDEX ClassIndex;
|
|
|
|
AmbigClassifierCalls++;
|
|
|
|
NumFeatures = GetCharNormFeatures (Blob, LineStats,
|
|
Templates,
|
|
IntFeatures, CharNormArray,
|
|
&(Results->BlobLength));
|
|
if (NumFeatures <= 0)
|
|
return;
|
|
|
|
if (MatcherDebugLevel >= 2)
|
|
cprintf ("AM Matches = ");
|
|
|
|
while (*Ambiguities >= 0) {
|
|
ClassId = *Ambiguities;
|
|
ClassIndex = Templates->IndexFor[ClassId];
|
|
|
|
SetCharNormMatch();
|
|
IntegerMatcher (ClassForClassId (Templates, ClassId),
|
|
AllProtosOn, AllConfigsOn,
|
|
Results->BlobLength, NumFeatures, IntFeatures,
|
|
CharNormArray[ClassIndex], &IntResult, NO_DEBUG);
|
|
|
|
if (MatcherDebugLevel >= 2)
|
|
cprintf ("%s-%-2d %2.0f ", unicharset.id_to_unichar(ClassId),
|
|
IntResult.Config,
|
|
IntResult.Rating * 100.0);
|
|
|
|
AddNewResult (Results, ClassId, IntResult.Rating, IntResult.Config);
|
|
|
|
Ambiguities++;
|
|
|
|
NumAmbigClassesTried++;
|
|
}
|
|
if (MatcherDebugLevel >= 2)
|
|
cprintf ("\n");
|
|
|
|
} /* AmbigClassifier */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
// Factored-out calls to IntegerMatcher based on class pruner results.
|
|
// Returns integer matcher results inside CLASS_PRUNER_RESULTS structure.
|
|
void MasterMatcher(INT_TEMPLATES templates,
|
|
inT16 num_features,
|
|
INT_FEATURE_ARRAY features,
|
|
CLASS_NORMALIZATION_ARRAY norm_factors,
|
|
ADAPT_CLASS* classes,
|
|
int debug,
|
|
int num_classes,
|
|
CLASS_PRUNER_RESULTS results,
|
|
ADAPT_RESULTS* final_results) {
|
|
for (int c = 0; c < num_classes; c++) {
|
|
CLASS_ID class_id = results[c].Class;
|
|
INT_RESULT_STRUCT& int_result = results[c].IMResult;
|
|
CLASS_INDEX class_index = templates->IndexFor[class_id];
|
|
BIT_VECTOR protos = classes != NULL ? classes[class_index]->PermProtos
|
|
: AllProtosOn;
|
|
BIT_VECTOR configs = classes != NULL ? classes[class_index]->PermConfigs
|
|
: AllConfigsOn;
|
|
|
|
IntegerMatcher(ClassForClassId(templates, class_id),
|
|
protos, configs, final_results->BlobLength,
|
|
num_features, features, norm_factors[class_index],
|
|
&int_result, NO_DEBUG);
|
|
// Compute class feature corrections.
|
|
double miss_penalty = tessedit_class_miss_scale *
|
|
int_result.FeatureMisses;
|
|
if (MatcherDebugLevel >= 2 || display_ratings > 1) {
|
|
cprintf("%s-%-2d %2.1f(CP%2.1f, IM%2.1f + MP%2.1f) ",
|
|
unicharset.id_to_unichar(class_id), int_result.Config,
|
|
(int_result.Rating + miss_penalty) * 100.0,
|
|
results[c].Rating * 100.0,
|
|
int_result.Rating * 100.0, miss_penalty * 100.0);
|
|
if (c % 4 == 3)
|
|
cprintf ("\n");
|
|
}
|
|
int_result.Rating += miss_penalty;
|
|
if (int_result.Rating > WORST_POSSIBLE_RATING)
|
|
int_result.Rating = WORST_POSSIBLE_RATING;
|
|
AddNewResult(final_results, class_id, int_result.Rating, int_result.Config);
|
|
}
|
|
if (MatcherDebugLevel >= 2 || display_ratings > 1)
|
|
cprintf("\n");
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
UNICHAR_ID *BaselineClassifier(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
ADAPT_TEMPLATES Templates,
|
|
ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to be classified
|
|
** LineStats
|
|
statistics for text line Blob is in
|
|
** Templates
|
|
current set of adapted templates
|
|
** Results
|
|
place to put match results
|
|
** Globals:
|
|
** BaselineCutoffs
|
|
expected num features for each class
|
|
** Operation: This routine extracts baseline normalized features
|
|
** from the unknown character and matches them against the
|
|
** specified set of templates. The classes which match
|
|
** are added to Results.
|
|
** Return: Array of possible ambiguous chars that should be checked.
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 19:38:03 1991, DSJ, Created.
|
|
*/
|
|
int NumFeatures;
|
|
int NumClasses;
|
|
INT_FEATURE_ARRAY IntFeatures;
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray;
|
|
CLASS_ID ClassId;
|
|
CLASS_INDEX ClassIndex;
|
|
|
|
BaselineClassifierCalls++;
|
|
|
|
NumFeatures = GetBaselineFeatures (Blob, LineStats,
|
|
Templates->Templates,
|
|
IntFeatures, CharNormArray,
|
|
&(Results->BlobLength));
|
|
if (NumFeatures <= 0)
|
|
return NULL;
|
|
|
|
NumClasses = ClassPruner (Templates->Templates, NumFeatures,
|
|
IntFeatures, CharNormArray,
|
|
BaselineCutoffs, Results->CPResults,
|
|
MatchDebugFlags);
|
|
|
|
NumBaselineClassesTried += NumClasses;
|
|
|
|
if (MatcherDebugLevel >= 2 || display_ratings > 1)
|
|
cprintf ("BL Matches = ");
|
|
|
|
SetBaseLineMatch();
|
|
MasterMatcher(Templates->Templates, NumFeatures, IntFeatures, CharNormArray,
|
|
Templates->Class, MatchDebugFlags, NumClasses,
|
|
Results->CPResults, Results);
|
|
|
|
ClassId = Results->BestClass;
|
|
if (ClassId == NO_CLASS)
|
|
return (NULL);
|
|
/* this is a bug - maybe should return "" */
|
|
|
|
ClassIndex = Templates->Templates->IndexFor[ClassId];
|
|
return (Templates->Class[ClassIndex]->
|
|
Config[Results->BestConfig].Perm);
|
|
} /* BaselineClassifier */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void CharNormClassifier(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to be classified
|
|
** LineStats
|
|
statistics for text line Blob is in
|
|
** Templates
|
|
templates to classify unknown against
|
|
** Results
|
|
place to put match results
|
|
** Globals:
|
|
** CharNormCutoffs
|
|
expected num features for each class
|
|
** AllProtosOn
|
|
mask that enables all protos
|
|
** AllConfigsOn
|
|
mask that enables all configs
|
|
** Operation: This routine extracts character normalized features
|
|
** from the unknown character and matches them against the
|
|
** specified set of templates. The classes which match
|
|
** are added to Results.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 16:02:52 1991, DSJ, Created.
|
|
*/
|
|
int NumFeatures;
|
|
int NumClasses;
|
|
INT_FEATURE_ARRAY IntFeatures;
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray;
|
|
|
|
CharNormClassifierCalls++;
|
|
|
|
NumFeatures = GetCharNormFeatures(Blob, LineStats,
|
|
Templates,
|
|
IntFeatures, CharNormArray,
|
|
&(Results->BlobLength));
|
|
if (NumFeatures <= 0)
|
|
return;
|
|
|
|
NumClasses = ClassPruner(Templates, NumFeatures,
|
|
IntFeatures, CharNormArray,
|
|
CharNormCutoffs, Results->CPResults,
|
|
MatchDebugFlags);
|
|
|
|
if (tessedit_single_match && NumClasses > 1)
|
|
NumClasses = 1;
|
|
NumCharNormClassesTried += NumClasses;
|
|
|
|
if (MatcherDebugLevel >= 2 || display_ratings > 1)
|
|
cprintf("CN Matches = ");
|
|
|
|
SetCharNormMatch();
|
|
MasterMatcher(Templates, NumFeatures, IntFeatures, CharNormArray,
|
|
NULL, MatchDebugFlags, NumClasses,
|
|
Results->CPResults, Results);
|
|
} /* CharNormClassifier */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void ClassifyAsNoise(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to be classified
|
|
** LineStats
|
|
statistics for text line Blob is in
|
|
** Results
|
|
results to add noise classification to
|
|
** Globals:
|
|
** NoiseBlobLength
|
|
avg. length of a noise blob
|
|
** Operation: This routine computes a rating which reflects the
|
|
** likelihood that the blob being classified is a noise
|
|
** blob. NOTE: assumes that the blob length has already been
|
|
** computed and placed into Results.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 18:36:52 1991, DSJ, Created.
|
|
*/
|
|
register FLOAT32 Rating;
|
|
|
|
Rating = Results->BlobLength / NoiseBlobLength;
|
|
Rating *= Rating;
|
|
Rating /= 1.0 + Rating;
|
|
|
|
AddNewResult (Results, NO_CLASS, Rating, 0);
|
|
} /* ClassifyAsNoise */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int CompareCurrentRatings( //CLASS_ID *Class1,
|
|
const void *arg1,
|
|
const void *arg2) { //CLASS_ID *Class2)
|
|
/*
|
|
** Parameters:
|
|
** Class1, Class2
|
|
classes whose ratings are to be compared
|
|
** Globals:
|
|
** CurrentRatings
|
|
contains actual ratings for each class
|
|
** Operation: This routine gets the ratings for the 2 specified classes
|
|
** from a global variable (CurrentRatings) and returns:
|
|
** -1 if Rating1 < Rating2
|
|
** 0 if Rating1 = Rating2
|
|
** 1 if Rating1 > Rating2
|
|
** Return: Order of classes based on their ratings (see above).
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 14:18:31 1991, DSJ, Created.
|
|
*/
|
|
FLOAT32 Rating1, Rating2;
|
|
CLASS_ID *Class1 = (CLASS_ID *) arg1;
|
|
CLASS_ID *Class2 = (CLASS_ID *) arg2;
|
|
|
|
Rating1 = CurrentRatings[*Class1];
|
|
Rating2 = CurrentRatings[*Class2];
|
|
|
|
if (Rating1 < Rating2)
|
|
return (-1);
|
|
else if (Rating1 > Rating2)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
|
|
} /* CompareCurrentRatings */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
LIST ConvertMatchesToChoices(ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Results
|
|
adaptive matcher results to convert to choices
|
|
** Globals: none
|
|
** Operation: This routine creates a choice for each matching class
|
|
** in Results (up to MAX_MATCHES) and returns a list of
|
|
** these choices. The match
|
|
** ratings are converted to be the ratings and certainties
|
|
** as used by the context checkers.
|
|
** Return: List of choices.
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 08:55:37 1991, DSJ, Created.
|
|
*/
|
|
int i;
|
|
LIST Choices;
|
|
CLASS_ID NextMatch;
|
|
FLOAT32 Rating;
|
|
FLOAT32 Certainty;
|
|
const char *NextMatch_unichar;
|
|
char choice_lengths[2] = {0, 0};
|
|
|
|
if (Results->NumMatches > MAX_MATCHES)
|
|
Results->NumMatches = MAX_MATCHES;
|
|
|
|
for (Choices = NIL, i = 0; i < Results->NumMatches; i++) {
|
|
NextMatch = Results->Classes[i];
|
|
Rating = Certainty = Results->Ratings[NextMatch];
|
|
Rating *= RatingScale * Results->BlobLength;
|
|
Certainty *= -CertaintyScale;
|
|
if (NextMatch != NO_CLASS)
|
|
NextMatch_unichar = unicharset.id_to_unichar(NextMatch);
|
|
else
|
|
NextMatch_unichar = "";
|
|
choice_lengths[0] = strlen(NextMatch_unichar);
|
|
Choices = append_choice (Choices,
|
|
NextMatch_unichar,
|
|
choice_lengths,
|
|
Rating, Certainty,
|
|
Results->Configs[NextMatch],
|
|
unicharset.get_script(NextMatch));
|
|
}
|
|
return (Choices);
|
|
|
|
} /* ConvertMatchesToChoices */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
#ifndef GRAPHICS_DISABLED
|
|
void DebugAdaptiveClassifier(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob whose classification is being debugged
|
|
** LineStats
|
|
statistics for text line blob is in
|
|
** Results
|
|
results of match being debugged
|
|
** Globals: none
|
|
** Operation:
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Wed Mar 13 16:44:41 1991, DSJ, Created.
|
|
*/
|
|
const char *Prompt =
|
|
"Left-click in IntegerMatch Window to continue or right click to debug...";
|
|
const char *DebugMode = "All Templates";
|
|
CLASS_ID LastClass = Results->BestClass;
|
|
CLASS_ID ClassId;
|
|
BOOL8 AdaptiveOn = TRUE;
|
|
BOOL8 PreTrainedOn = TRUE;
|
|
|
|
ShowMatchDisplay();
|
|
cprintf ("\nDebugging class = %s (%s) ...\n",
|
|
unicharset.id_to_unichar(LastClass), DebugMode);
|
|
ShowBestMatchFor(Blob, LineStats, LastClass, AdaptiveOn, PreTrainedOn);
|
|
UpdateMatchDisplay();
|
|
|
|
while ((ClassId = GetClassToDebug (Prompt)) != 0) {
|
|
#if 0
|
|
switch (ClassId) {
|
|
case 'b':
|
|
AdaptiveOn = TRUE;
|
|
PreTrainedOn = FALSE;
|
|
DebugMode = "Adaptive Templates Only";
|
|
break;
|
|
|
|
case 'c':
|
|
AdaptiveOn = FALSE;
|
|
PreTrainedOn = TRUE;
|
|
DebugMode = "PreTrained Templates Only";
|
|
break;
|
|
|
|
case 'a':
|
|
AdaptiveOn = TRUE;
|
|
PreTrainedOn = TRUE;
|
|
DebugMode = "All Templates";
|
|
break;
|
|
|
|
default:
|
|
LastClass = ClassId;
|
|
break;
|
|
}
|
|
#endif
|
|
LastClass = ClassId;
|
|
|
|
ShowMatchDisplay();
|
|
cprintf ("\nDebugging class = %d = %s (%s) ...\n",
|
|
LastClass, unicharset.id_to_unichar(LastClass), DebugMode);
|
|
ShowBestMatchFor(Blob, LineStats, LastClass, AdaptiveOn, PreTrainedOn);
|
|
UpdateMatchDisplay();
|
|
}
|
|
} /* DebugAdaptiveClassifier */
|
|
#endif
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void DoAdaptiveMatch(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to be classified
|
|
** LineStats
|
|
statistics for text line Blob is in
|
|
** Results
|
|
place to put match results
|
|
** Globals:
|
|
** PreTrainedTemplates
|
|
built-in training templates
|
|
** AdaptedTemplates
|
|
templates adapted for this page
|
|
** GreatAdaptiveMatch
|
|
rating limit for a great match
|
|
** Operation: This routine performs an adaptive classification.
|
|
** If we have not yet adapted to enough classes, a simple
|
|
** classification to the pre-trained templates is performed.
|
|
** Otherwise, we match the blob against the adapted templates.
|
|
** If the adapted templates do not match well, we try a
|
|
** match against the pre-trained templates. If an adapted
|
|
** template match is found, we do a match to any pre-trained
|
|
** templates which could be ambiguous. The results from all
|
|
** of these classifications are merged together into Results.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 08:50:11 1991, DSJ, Created.
|
|
*/
|
|
UNICHAR_ID *Ambiguities;
|
|
|
|
AdaptiveMatcherCalls++;
|
|
InitIntFX();
|
|
|
|
if (AdaptedTemplates->NumPermClasses < MinNumPermClasses
|
|
|| tess_cn_matching) {
|
|
CharNormClassifier(Blob, LineStats, PreTrainedTemplates, Results);
|
|
}
|
|
else {
|
|
Ambiguities = BaselineClassifier (Blob, LineStats,
|
|
AdaptedTemplates, Results);
|
|
|
|
if ((Results->NumMatches > 0 && MarginalMatch (Results->BestRating)
|
|
&& !tess_bn_matching) || Results->NumMatches == 0) {
|
|
CharNormClassifier(Blob, LineStats, PreTrainedTemplates, Results);
|
|
}
|
|
else if (Ambiguities && *Ambiguities >= 0) {
|
|
AmbigClassifier(Blob,
|
|
LineStats,
|
|
PreTrainedTemplates,
|
|
Ambiguities,
|
|
Results);
|
|
}
|
|
}
|
|
|
|
if (Results->NumMatches == 0)
|
|
ClassifyAsNoise(Blob, LineStats, Results);
|
|
/**/} /* DoAdaptiveMatch */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
GetAdaptThresholds (TWERD * Word,
|
|
LINE_STATS * LineStats,
|
|
const WERD_CHOICE& BestChoice,
|
|
const WERD_CHOICE& BestRawChoice, FLOAT32 Thresholds[]) {
|
|
/*
|
|
** Parameters:
|
|
** Word
|
|
current word
|
|
** LineStats
|
|
line stats for row word is in
|
|
** BestChoice
|
|
best choice for current word with context
|
|
** BestRawChoice
|
|
best choice for current word without context
|
|
** Thresholds
|
|
array of thresholds to be filled in
|
|
** Globals:
|
|
** EnableNewAdaptRules
|
|
** GoodAdaptiveMatch
|
|
** PerfectRating
|
|
** RatingMargin
|
|
** Operation: This routine tries to estimate how tight the adaptation
|
|
** threshold should be set for each character in the current
|
|
** word. In general, the routine tries to set tighter
|
|
** thresholds for a character when the current set of templates
|
|
** would have made an error on that character. It tries
|
|
** to set a threshold tight enough to eliminate the error.
|
|
** Two different sets of rules can be used to determine the
|
|
** desired thresholds.
|
|
** Return: none (results are returned in Thresholds)
|
|
** Exceptions: none
|
|
** History: Fri May 31 09:22:08 1991, DSJ, Created.
|
|
*/
|
|
TBLOB *Blob;
|
|
const char* BestChoice_string = BestChoice.string().string();
|
|
const char* BestChoice_lengths = BestChoice.lengths().string();
|
|
const char* BestRawChoice_string = BestRawChoice.string().string();
|
|
const char* BestRawChoice_lengths = BestRawChoice.lengths().string();
|
|
|
|
if (EnableNewAdaptRules && /* new rules */
|
|
CurrentBestChoiceIs (BestChoice_string, BestChoice_lengths)) {
|
|
FindClassifierErrors(PerfectRating,
|
|
GoodAdaptiveMatch,
|
|
RatingMargin,
|
|
Thresholds);
|
|
}
|
|
else { /* old rules */
|
|
for (Blob = Word->blobs;
|
|
Blob != NULL;
|
|
Blob = Blob->next, BestChoice_string += *(BestChoice_lengths++),
|
|
BestRawChoice_string += *(BestRawChoice_lengths++), Thresholds++)
|
|
if (*(BestChoice_lengths) == *(BestRawChoice_lengths) &&
|
|
strncmp(BestChoice_string, BestRawChoice_string,
|
|
*(BestChoice_lengths)) == 0)
|
|
*Thresholds = GoodAdaptiveMatch;
|
|
else {
|
|
/* the blob was incorrectly classified - find the rating threshold
|
|
needed to create a template which will correct the error with
|
|
some margin. However, don't waste time trying to make
|
|
templates which are too tight. */
|
|
*Thresholds = GetBestRatingFor (Blob, LineStats,
|
|
unicharset.unichar_to_id(
|
|
BestChoice_string,
|
|
*BestChoice_lengths));
|
|
*Thresholds *= (1.0 - RatingMargin);
|
|
if (*Thresholds > GoodAdaptiveMatch)
|
|
*Thresholds = GoodAdaptiveMatch;
|
|
if (*Thresholds < PerfectRating)
|
|
*Thresholds = PerfectRating;
|
|
}
|
|
}
|
|
} /* GetAdaptThresholds */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
UNICHAR_ID *GetAmbiguities(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID CorrectClass) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to get classification ambiguities for
|
|
** LineStats
|
|
statistics for text line blob is in
|
|
** CorrectClass
|
|
correct class for Blob
|
|
** Globals:
|
|
** CurrentRatings
|
|
used by qsort compare routine
|
|
** PreTrainedTemplates
|
|
built-in templates
|
|
** Operation: This routine matches blob to the built-in templates
|
|
** to find out if there are any classes other than the correct
|
|
** class which are potential ambiguities.
|
|
** Return: String containing all possible ambiguous classes.
|
|
** Exceptions: none
|
|
** History: Fri Mar 15 08:08:22 1991, DSJ, Created.
|
|
*/
|
|
ADAPT_RESULTS Results;
|
|
UNICHAR_ID *Ambiguities;
|
|
int i;
|
|
|
|
EnterClassifyMode;
|
|
|
|
Results.NumMatches = 0;
|
|
Results.BestRating = WORST_POSSIBLE_RATING;
|
|
Results.BestClass = NO_CLASS;
|
|
Results.BestConfig = 0;
|
|
InitMatcherRatings (Results.Ratings);
|
|
|
|
CharNormClassifier(Blob, LineStats, PreTrainedTemplates, &Results);
|
|
RemoveBadMatches(&Results);
|
|
|
|
/* save ratings in a global so that CompareCurrentRatings() can see them */
|
|
CurrentRatings = Results.Ratings;
|
|
qsort ((void *) (Results.Classes), Results.NumMatches,
|
|
sizeof (CLASS_ID), CompareCurrentRatings);
|
|
|
|
/* copy the class id's into an string of ambiguities - don't copy if
|
|
the correct class is the only class id matched */
|
|
Ambiguities = (UNICHAR_ID *) Emalloc (sizeof (UNICHAR_ID) *
|
|
(Results.NumMatches + 1));
|
|
if (Results.NumMatches > 1 ||
|
|
(Results.NumMatches == 1 && Results.Classes[0] != CorrectClass)) {
|
|
for (i = 0; i < Results.NumMatches; i++)
|
|
Ambiguities[i] = Results.Classes[i];
|
|
Ambiguities[i] = -1;
|
|
}
|
|
else
|
|
Ambiguities[0] = -1;
|
|
|
|
return (Ambiguities);
|
|
|
|
} /* GetAmbiguities */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int GetBaselineFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray,
|
|
inT32 *BlobLength) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to extract features from
|
|
** LineStats
|
|
statistics about text row blob is in
|
|
** Templates
|
|
used to compute char norm adjustments
|
|
** IntFeatures
|
|
array to fill with integer features
|
|
** CharNormArray
|
|
array to fill with dummy char norm adjustments
|
|
** BlobLength
|
|
length of blob in baseline-normalized units
|
|
** Globals: none
|
|
** Operation: This routine sets up the feature extractor to extract
|
|
** baseline normalized pico-features.
|
|
** The extracted pico-features are converted
|
|
** to integer form and placed in IntFeatures. CharNormArray
|
|
** is filled with 0's to indicate to the matcher that no
|
|
** character normalization adjustment needs to be done.
|
|
** The total length of all blob outlines
|
|
** in baseline normalized units is also returned.
|
|
** Return: Number of pico-features returned (0 if an error occurred)
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 17:55:18 1991, DSJ, Created.
|
|
*/
|
|
FEATURE_SET Features;
|
|
int NumFeatures;
|
|
|
|
if (EnableIntFX)
|
|
return (GetIntBaselineFeatures (Blob, LineStats, Templates,
|
|
IntFeatures, CharNormArray, BlobLength));
|
|
|
|
NormMethod = baseline;
|
|
Features = ExtractPicoFeatures (Blob, LineStats);
|
|
|
|
NumFeatures = Features->NumFeatures;
|
|
*BlobLength = NumFeatures;
|
|
if (NumFeatures > UNLIKELY_NUM_FEAT) {
|
|
FreeFeatureSet(Features);
|
|
return (0);
|
|
}
|
|
|
|
ComputeIntFeatures(Features, IntFeatures);
|
|
ClearCharNormArray(Templates, CharNormArray);
|
|
|
|
FreeFeatureSet(Features);
|
|
return (NumFeatures);
|
|
|
|
} /* GetBaselineFeatures */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
FLOAT32 GetBestRatingFor(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID ClassId) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to get best rating for
|
|
** LineStats
|
|
statistics about text line blob is in
|
|
** ClassId
|
|
class blob is to be compared to
|
|
** Globals:
|
|
** PreTrainedTemplates
|
|
built-in templates
|
|
** AdaptedTemplates
|
|
current set of adapted templates
|
|
** AllProtosOn
|
|
dummy mask to enable all protos
|
|
** AllConfigsOn
|
|
dummy mask to enable all configs
|
|
** Operation: This routine classifies Blob against both sets of
|
|
** templates for the specified class and returns the best
|
|
** rating found.
|
|
** Return: Best rating for match of Blob to ClassId.
|
|
** Exceptions: none
|
|
** History: Tue Apr 9 09:01:24 1991, DSJ, Created.
|
|
*/
|
|
int NumCNFeatures, NumBLFeatures;
|
|
INT_FEATURE_ARRAY CNFeatures, BLFeatures;
|
|
INT_RESULT_STRUCT CNResult, BLResult;
|
|
CLASS_NORMALIZATION_ARRAY CNAdjust, BLAdjust;
|
|
CLASS_INDEX ClassIndex;
|
|
inT32 BlobLength;
|
|
|
|
CNResult.Rating = BLResult.Rating = 1.0;
|
|
|
|
if (!LegalClassId (ClassId))
|
|
return (1.0);
|
|
|
|
if (!UnusedClassIdIn (PreTrainedTemplates, ClassId)) {
|
|
NumCNFeatures = GetCharNormFeatures (Blob, LineStats,
|
|
PreTrainedTemplates,
|
|
CNFeatures, CNAdjust, &BlobLength);
|
|
if (NumCNFeatures > 0) {
|
|
ClassIndex = PreTrainedTemplates->IndexFor[ClassId];
|
|
|
|
SetCharNormMatch();
|
|
IntegerMatcher (ClassForClassId (PreTrainedTemplates, ClassId),
|
|
AllProtosOn, AllConfigsOn,
|
|
BlobLength, NumCNFeatures, CNFeatures,
|
|
CNAdjust[ClassIndex], &CNResult, NO_DEBUG);
|
|
}
|
|
}
|
|
|
|
if (!UnusedClassIdIn (AdaptedTemplates->Templates, ClassId)) {
|
|
NumBLFeatures = GetBaselineFeatures (Blob, LineStats,
|
|
AdaptedTemplates->Templates,
|
|
BLFeatures, BLAdjust, &BlobLength);
|
|
if (NumBLFeatures > 0) {
|
|
ClassIndex = AdaptedTemplates->Templates->IndexFor[ClassId];
|
|
|
|
SetBaseLineMatch();
|
|
IntegerMatcher (ClassForClassId
|
|
(AdaptedTemplates->Templates, ClassId),
|
|
AdaptedTemplates->Class[ClassIndex]->PermProtos,
|
|
AdaptedTemplates->Class[ClassIndex]->PermConfigs,
|
|
BlobLength, NumBLFeatures, BLFeatures,
|
|
BLAdjust[ClassIndex], &BLResult, NO_DEBUG);
|
|
}
|
|
}
|
|
|
|
return (MIN (BLResult.Rating, CNResult.Rating));
|
|
|
|
} /* GetBestRatingFor */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int GetCharNormFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray,
|
|
inT32 *BlobLength) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to extract features from
|
|
** LineStats
|
|
statistics about text row blob is in
|
|
** Templates
|
|
used to compute char norm adjustments
|
|
** IntFeatures
|
|
array to fill with integer features
|
|
** CharNormArray
|
|
array to fill with char norm adjustments
|
|
** BlobLength
|
|
length of blob in baseline-normalized units
|
|
** Globals: none
|
|
** Operation: This routine sets up the feature extractor to extract
|
|
** character normalization features and character normalized
|
|
** pico-features. The extracted pico-features are converted
|
|
** to integer form and placed in IntFeatures. The character
|
|
** normalization features are matched to each class in
|
|
** templates and the resulting adjustment factors are returned
|
|
** in CharNormArray. The total length of all blob outlines
|
|
** in baseline normalized units is also returned.
|
|
** Return: Number of pico-features returned (0 if an error occurred)
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 17:55:18 1991, DSJ, Created.
|
|
*/
|
|
return (GetIntCharNormFeatures (Blob, LineStats, Templates,
|
|
IntFeatures, CharNormArray, BlobLength));
|
|
} /* GetCharNormFeatures */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int GetIntBaselineFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray,
|
|
inT32 *BlobLength) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to extract features from
|
|
** LineStats
|
|
statistics about text row blob is in
|
|
** Templates
|
|
used to compute char norm adjustments
|
|
** IntFeatures
|
|
array to fill with integer features
|
|
** CharNormArray
|
|
array to fill with dummy char norm adjustments
|
|
** BlobLength
|
|
length of blob in baseline-normalized units
|
|
** Globals:
|
|
** FeaturesHaveBeenExtracted
|
|
TRUE if fx has been done
|
|
** BaselineFeatures
|
|
holds extracted baseline feat
|
|
** CharNormFeatures
|
|
holds extracted char norm feat
|
|
** FXInfo
|
|
holds misc. FX info
|
|
** Operation: This routine calls the integer (Hardware) feature
|
|
** extractor if it has not been called before for this blob.
|
|
** The results from the feature extractor are placed into
|
|
** globals so that they can be used in other routines without
|
|
** re-extracting the features.
|
|
** It then copies the baseline features into the IntFeatures
|
|
** array provided by the caller.
|
|
** Return: Number of features extracted or 0 if an error occured.
|
|
** Exceptions: none
|
|
** History: Tue May 28 10:40:52 1991, DSJ, Created.
|
|
*/
|
|
register INT_FEATURE Src, Dest, End;
|
|
|
|
if (!FeaturesHaveBeenExtracted) {
|
|
FeaturesOK = ExtractIntFeat (Blob, BaselineFeatures,
|
|
CharNormFeatures, &FXInfo);
|
|
FeaturesHaveBeenExtracted = TRUE;
|
|
}
|
|
|
|
if (!FeaturesOK) {
|
|
*BlobLength = FXInfo.NumBL;
|
|
return (0);
|
|
}
|
|
|
|
for (Src = BaselineFeatures, End = Src + FXInfo.NumBL, Dest = IntFeatures;
|
|
Src < End; *Dest++ = *Src++);
|
|
|
|
ClearCharNormArray(Templates, CharNormArray);
|
|
*BlobLength = FXInfo.NumBL;
|
|
return (FXInfo.NumBL);
|
|
|
|
} /* GetIntBaselineFeatures */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int GetIntCharNormFeatures(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
INT_TEMPLATES Templates,
|
|
INT_FEATURE_ARRAY IntFeatures,
|
|
CLASS_NORMALIZATION_ARRAY CharNormArray,
|
|
inT32 *BlobLength) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to extract features from
|
|
** LineStats
|
|
statistics about text row blob is in
|
|
** Templates
|
|
used to compute char norm adjustments
|
|
** IntFeatures
|
|
array to fill with integer features
|
|
** CharNormArray
|
|
array to fill with dummy char norm adjustments
|
|
** BlobLength
|
|
length of blob in baseline-normalized units
|
|
** Globals:
|
|
** FeaturesHaveBeenExtracted
|
|
TRUE if fx has been done
|
|
** BaselineFeatures
|
|
holds extracted baseline feat
|
|
** CharNormFeatures
|
|
holds extracted char norm feat
|
|
** FXInfo
|
|
holds misc. FX info
|
|
** Operation: This routine calls the integer (Hardware) feature
|
|
** extractor if it has not been called before for this blob.
|
|
** The results from the feature extractor are placed into
|
|
** globals so that they can be used in other routines without
|
|
** re-extracting the features.
|
|
** It then copies the char norm features into the IntFeatures
|
|
** array provided by the caller.
|
|
** Return: Number of features extracted or 0 if an error occured.
|
|
** Exceptions: none
|
|
** History: Tue May 28 10:40:52 1991, DSJ, Created.
|
|
*/
|
|
register INT_FEATURE Src, Dest, End;
|
|
FEATURE NormFeature;
|
|
FLOAT32 Baseline, Scale;
|
|
|
|
if (!FeaturesHaveBeenExtracted) {
|
|
FeaturesOK = ExtractIntFeat (Blob, BaselineFeatures,
|
|
CharNormFeatures, &FXInfo);
|
|
FeaturesHaveBeenExtracted = TRUE;
|
|
}
|
|
|
|
if (!FeaturesOK) {
|
|
*BlobLength = FXInfo.NumBL;
|
|
return (0);
|
|
}
|
|
|
|
for (Src = CharNormFeatures, End = Src + FXInfo.NumCN, Dest = IntFeatures;
|
|
Src < End; *Dest++ = *Src++);
|
|
|
|
NormFeature = NewFeature (&CharNormDesc);
|
|
Baseline = BaselineAt (LineStats, FXInfo.Xmean);
|
|
Scale = ComputeScaleFactor (LineStats);
|
|
NormFeature->Params[CharNormY] = (FXInfo.Ymean - Baseline) * Scale;
|
|
NormFeature->Params[CharNormLength] =
|
|
FXInfo.Length * Scale / LENGTH_COMPRESSION;
|
|
NormFeature->Params[CharNormRx] = FXInfo.Rx * Scale;
|
|
NormFeature->Params[CharNormRy] = FXInfo.Ry * Scale;
|
|
ComputeIntCharNormArray(NormFeature, Templates, CharNormArray);
|
|
FreeFeature(NormFeature);
|
|
|
|
*BlobLength = FXInfo.NumBL;
|
|
return (FXInfo.NumCN);
|
|
|
|
} /* GetIntCharNormFeatures */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void InitMatcherRatings(register FLOAT32 *Rating) {
|
|
/*
|
|
** Parameters:
|
|
** Rating
|
|
ptr to array of ratings to be initialized
|
|
** Globals: none
|
|
** Operation: This routine initializes the best rating for each class
|
|
** to be the worst possible rating (1.0).
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 13:43:28 1991, DSJ, Created.
|
|
*/
|
|
register FLOAT32 *LastRating;
|
|
register FLOAT32 WorstRating = WORST_POSSIBLE_RATING;
|
|
|
|
for (LastRating = Rating + MAX_CLASS_ID;
|
|
Rating <= LastRating; *Rating++ = WorstRating);
|
|
|
|
} /* InitMatcherRatings */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int MakeNewTemporaryConfig(ADAPT_TEMPLATES Templates,
|
|
CLASS_ID ClassId,
|
|
int NumFeatures,
|
|
INT_FEATURE_ARRAY Features,
|
|
FEATURE_SET FloatFeatures) {
|
|
/*
|
|
** Parameters:
|
|
** Templates
|
|
adapted templates to add new config to
|
|
** ClassId
|
|
class id to associate with new config
|
|
** NumFeatures
|
|
number of features in IntFeatures
|
|
** Features
|
|
features describing model for new config
|
|
** FloatFeatures
|
|
floating-pt representation of features
|
|
** Globals:
|
|
** AllProtosOn
|
|
mask to enable all protos
|
|
** AllConfigsOff
|
|
mask to disable all configs
|
|
** TempProtoMask
|
|
defines old protos matched in new config
|
|
** Operation:
|
|
** Return: The id of the new config created, a negative integer in
|
|
** case of error.
|
|
** Exceptions: none
|
|
** History: Fri Mar 15 08:49:46 1991, DSJ, Created.
|
|
*/
|
|
CLASS_INDEX ClassIndex;
|
|
INT_CLASS IClass;
|
|
ADAPT_CLASS Class;
|
|
PROTO_ID OldProtos[MAX_NUM_PROTOS];
|
|
FEATURE_ID BadFeatures[MAX_NUM_INT_FEATURES];
|
|
int NumOldProtos;
|
|
int NumBadFeatures;
|
|
int MaxProtoId, OldMaxProtoId;
|
|
int BlobLength = 0;
|
|
int MaskSize;
|
|
int ConfigId;
|
|
TEMP_CONFIG Config;
|
|
int i;
|
|
int debug_level = NO_DEBUG;
|
|
|
|
if (LearningDebugLevel >= 3)
|
|
debug_level =
|
|
PRINT_MATCH_SUMMARY | PRINT_FEATURE_MATCHES | PRINT_PROTO_MATCHES;
|
|
|
|
ClassIndex = Templates->Templates->IndexFor[ClassId];
|
|
IClass = ClassForClassId (Templates->Templates, ClassId);
|
|
Class = Templates->Class[ClassIndex];
|
|
|
|
if (IClass->NumConfigs >= MAX_NUM_CONFIGS)
|
|
{
|
|
++NumAdaptationsFailed;
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Cannot make new temporary config: maximum number exceeded.\n");
|
|
return -1;
|
|
}
|
|
|
|
OldMaxProtoId = IClass->NumProtos - 1;
|
|
|
|
NumOldProtos = FindGoodProtos (IClass, AllProtosOn, AllConfigsOff,
|
|
BlobLength, NumFeatures, Features,
|
|
OldProtos, debug_level);
|
|
|
|
MaskSize = WordsInVectorOfSize (MAX_NUM_PROTOS);
|
|
zero_all_bits(TempProtoMask, MaskSize);
|
|
for (i = 0; i < NumOldProtos; i++)
|
|
SET_BIT (TempProtoMask, OldProtos[i]);
|
|
|
|
NumBadFeatures = FindBadFeatures (IClass, TempProtoMask, AllConfigsOn,
|
|
BlobLength, NumFeatures, Features,
|
|
BadFeatures, debug_level);
|
|
|
|
MaxProtoId = MakeNewTempProtos (FloatFeatures, NumBadFeatures, BadFeatures,
|
|
IClass, Class, TempProtoMask);
|
|
if (MaxProtoId == NO_PROTO)
|
|
{
|
|
++NumAdaptationsFailed;
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Cannot make new temp protos: maximum number exceeded.\n");
|
|
return -1;
|
|
}
|
|
|
|
ConfigId = AddIntConfig (IClass);
|
|
ConvertConfig(TempProtoMask, ConfigId, IClass);
|
|
Config = NewTempConfig (MaxProtoId);
|
|
TempConfigFor (Class, ConfigId) = Config;
|
|
copy_all_bits (TempProtoMask, Config->Protos, Config->ProtoVectorSize);
|
|
|
|
if (LearningDebugLevel >= 1)
|
|
cprintf ("Making new temp config %d using %d old and %d new protos.\n",
|
|
ConfigId, NumOldProtos, MaxProtoId - OldMaxProtoId);
|
|
|
|
return ConfigId;
|
|
} /* MakeNewTemporaryConfig */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
PROTO_ID
|
|
MakeNewTempProtos (FEATURE_SET Features,
|
|
int NumBadFeat,
|
|
FEATURE_ID BadFeat[],
|
|
INT_CLASS IClass,
|
|
ADAPT_CLASS Class, BIT_VECTOR TempProtoMask) {
|
|
/*
|
|
** Parameters:
|
|
** Features
|
|
floating-pt features describing new character
|
|
** NumBadFeat
|
|
number of bad features to turn into protos
|
|
** BadFeat
|
|
feature id's of bad features
|
|
** IClass
|
|
integer class templates to add new protos to
|
|
** Class
|
|
adapted class templates to add new protos to
|
|
** TempProtoMask
|
|
proto mask to add new protos to
|
|
** Globals: none
|
|
** Operation: This routine finds sets of sequential bad features
|
|
** that all have the same angle and converts each set into
|
|
** a new temporary proto. The temp proto is added to the
|
|
** proto pruner for IClass, pushed onto the list of temp
|
|
** protos in Class, and added to TempProtoMask.
|
|
** Return: Max proto id in class after all protos have been added.
|
|
** Exceptions: none
|
|
** History: Fri Mar 15 11:39:38 1991, DSJ, Created.
|
|
*/
|
|
FEATURE_ID *ProtoStart;
|
|
FEATURE_ID *ProtoEnd;
|
|
FEATURE_ID *LastBad;
|
|
TEMP_PROTO TempProto;
|
|
PROTO Proto;
|
|
FEATURE F1, F2;
|
|
FLOAT32 X1, X2, Y1, Y2;
|
|
FLOAT32 A1, A2, AngleDelta;
|
|
FLOAT32 SegmentLength;
|
|
PROTO_ID Pid;
|
|
|
|
for (ProtoStart = BadFeat, LastBad = ProtoStart + NumBadFeat;
|
|
ProtoStart < LastBad; ProtoStart = ProtoEnd) {
|
|
F1 = Features->Features[*ProtoStart];
|
|
X1 = F1->Params[PicoFeatX];
|
|
Y1 = F1->Params[PicoFeatY];
|
|
A1 = F1->Params[PicoFeatDir];
|
|
|
|
for (ProtoEnd = ProtoStart + 1,
|
|
SegmentLength = GetPicoFeatureLength ();
|
|
ProtoEnd < LastBad;
|
|
ProtoEnd++, SegmentLength += GetPicoFeatureLength ()) {
|
|
F2 = Features->Features[*ProtoEnd];
|
|
X2 = F2->Params[PicoFeatX];
|
|
Y2 = F2->Params[PicoFeatY];
|
|
A2 = F2->Params[PicoFeatDir];
|
|
|
|
AngleDelta = fabs (A1 - A2);
|
|
if (AngleDelta > 0.5)
|
|
AngleDelta = 1.0 - AngleDelta;
|
|
|
|
if (AngleDelta > MaxAngleDelta ||
|
|
fabs (X1 - X2) > SegmentLength ||
|
|
fabs (Y1 - Y2) > SegmentLength)
|
|
break;
|
|
}
|
|
|
|
F2 = Features->Features[*(ProtoEnd - 1)];
|
|
X2 = F2->Params[PicoFeatX];
|
|
Y2 = F2->Params[PicoFeatY];
|
|
A2 = F2->Params[PicoFeatDir];
|
|
|
|
Pid = AddIntProto (IClass);
|
|
if (Pid == NO_PROTO)
|
|
return (NO_PROTO);
|
|
|
|
TempProto = NewTempProto ();
|
|
Proto = &(TempProto->Proto);
|
|
|
|
/* compute proto params - NOTE that Y_DIM_OFFSET must be used because
|
|
ConvertProto assumes that the Y dimension varies from -0.5 to 0.5
|
|
instead of the -0.25 to 0.75 used in baseline normalization */
|
|
Proto->Length = SegmentLength;
|
|
Proto->Angle = A1;
|
|
Proto->X = (X1 + X2) / 2.0;
|
|
Proto->Y = (Y1 + Y2) / 2.0 - Y_DIM_OFFSET;
|
|
FillABC(Proto);
|
|
|
|
TempProto->ProtoId = Pid;
|
|
SET_BIT(TempProtoMask, Pid);
|
|
|
|
ConvertProto(Proto, Pid, IClass);
|
|
AddProtoToProtoPruner(Proto, Pid, IClass);
|
|
|
|
Class->TempProtos = push (Class->TempProtos, TempProto);
|
|
}
|
|
return (IClass->NumProtos - 1);
|
|
} /* MakeNewTempProtos */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void MakePermanent(ADAPT_TEMPLATES Templates,
|
|
CLASS_ID ClassId,
|
|
int ConfigId,
|
|
TBLOB *Blob,
|
|
LINE_STATS *LineStats) {
|
|
/*
|
|
** Parameters:
|
|
** Templates
|
|
current set of adaptive templates
|
|
** ClassId
|
|
class containing config to be made permanent
|
|
** ConfigId
|
|
config to be made permanent
|
|
** Blob
|
|
current blob being adapted to
|
|
** LineStats
|
|
statistics about text line Blob is in
|
|
** Globals: none
|
|
** Operation:
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Thu Mar 14 15:54:08 1991, DSJ, Created.
|
|
*/
|
|
UNICHAR_ID *Ambigs;
|
|
TEMP_CONFIG Config;
|
|
CLASS_INDEX ClassIndex;
|
|
ADAPT_CLASS Class;
|
|
PROTO_KEY ProtoKey;
|
|
|
|
ClassIndex = Templates->Templates->IndexFor[ClassId];
|
|
Class = Templates->Class[ClassIndex];
|
|
Config = TempConfigFor (Class, ConfigId);
|
|
|
|
MakeConfigPermanent(Class, ConfigId);
|
|
if (Class->NumPermConfigs == 0)
|
|
Templates->NumPermClasses++;
|
|
Class->NumPermConfigs++;
|
|
|
|
ProtoKey.Templates = Templates;
|
|
ProtoKey.ClassId = ClassId;
|
|
ProtoKey.ConfigId = ConfigId;
|
|
Class->TempProtos = delete_d (Class->TempProtos, &ProtoKey,
|
|
MakeTempProtoPerm);
|
|
FreeTempConfig(Config);
|
|
|
|
Ambigs = GetAmbiguities (Blob, LineStats, ClassId);
|
|
PermConfigFor (Class, ConfigId) = Ambigs;
|
|
|
|
if (LearningDebugLevel >= 1) {
|
|
cprintf ("Making config %d permanent with ambiguities '",
|
|
ConfigId, Ambigs);
|
|
for (UNICHAR_ID *AmbigsPointer = Ambigs;
|
|
*AmbigsPointer >= 0; ++AmbigsPointer)
|
|
cprintf("%s", unicharset.id_to_unichar(*AmbigsPointer));
|
|
cprintf("'.\n");
|
|
}
|
|
|
|
} /* MakePermanent */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int MakeTempProtoPerm(void *item1, //TEMP_PROTO TempProto,
|
|
void *item2) { //PROTO_KEY *ProtoKey)
|
|
/*
|
|
** Parameters:
|
|
** TempProto
|
|
temporary proto to compare to key
|
|
** ProtoKey
|
|
defines which protos to make permanent
|
|
** Globals: none
|
|
** Operation: This routine converts TempProto to be permanent if
|
|
** its proto id is used by the configuration specified in
|
|
** ProtoKey.
|
|
** Return: TRUE if TempProto is converted, FALSE otherwise
|
|
** Exceptions: none
|
|
** History: Thu Mar 14 18:49:54 1991, DSJ, Created.
|
|
*/
|
|
CLASS_INDEX ClassIndex;
|
|
ADAPT_CLASS Class;
|
|
TEMP_CONFIG Config;
|
|
TEMP_PROTO TempProto;
|
|
PROTO_KEY *ProtoKey;
|
|
|
|
TempProto = (TEMP_PROTO) item1;
|
|
ProtoKey = (PROTO_KEY *) item2;
|
|
|
|
ClassIndex = ProtoKey->Templates->Templates->IndexFor[ProtoKey->ClassId];
|
|
Class = ProtoKey->Templates->Class[ClassIndex];
|
|
Config = TempConfigFor (Class, ProtoKey->ConfigId);
|
|
|
|
if (TempProto->ProtoId > Config->MaxProtoId ||
|
|
!test_bit (Config->Protos, TempProto->ProtoId))
|
|
return (FALSE);
|
|
|
|
MakeProtoPermanent (Class, TempProto->ProtoId);
|
|
AddProtoToClassPruner (&(TempProto->Proto), ProtoKey->ClassId,
|
|
ProtoKey->Templates->Templates);
|
|
FreeTempProto(TempProto);
|
|
|
|
return (TRUE);
|
|
|
|
} /* MakeTempProtoPerm */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int NumBlobsIn(TWERD *Word) {
|
|
/*
|
|
** Parameters:
|
|
** Word
|
|
word to count blobs in
|
|
** Globals: none
|
|
** Operation: This routine returns the number of blobs in Word.
|
|
** Return: Number of blobs in Word.
|
|
** Exceptions: none
|
|
** History: Thu Mar 14 08:30:27 1991, DSJ, Created.
|
|
*/
|
|
register TBLOB *Blob;
|
|
register int NumBlobs;
|
|
|
|
if (Word == NULL)
|
|
return (0);
|
|
|
|
for (Blob = Word->blobs, NumBlobs = 0;
|
|
Blob != NULL; Blob = Blob->next, NumBlobs++);
|
|
|
|
return (NumBlobs);
|
|
|
|
} /* NumBlobsIn */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int NumOutlinesInBlob(TBLOB *Blob) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to count outlines in
|
|
** Globals: none
|
|
** Operation: This routine returns the number of OUTER outlines
|
|
** in Blob.
|
|
** Return: Number of outer outlines in Blob.
|
|
** Exceptions: none
|
|
** History: Mon Jun 10 15:46:20 1991, DSJ, Created.
|
|
*/
|
|
register TESSLINE *Outline;
|
|
register int NumOutlines;
|
|
|
|
if (Blob == NULL)
|
|
return (0);
|
|
|
|
for (Outline = Blob->outlines, NumOutlines = 0;
|
|
Outline != NULL; Outline = Outline->next, NumOutlines++);
|
|
|
|
return (NumOutlines);
|
|
|
|
} /* NumOutlinesInBlob */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void PrintAdaptiveMatchResults(FILE *File, ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** File
|
|
open text file to write Results to
|
|
** Results
|
|
match results to write to File
|
|
** Globals: none
|
|
** Operation: This routine writes the matches in Results to File.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Mon Mar 18 09:24:53 1991, DSJ, Created.
|
|
*/
|
|
for (int i = 0; i < Results->NumMatches; ++i) {
|
|
cprintf("%s(%d) %.2f ",
|
|
unicharset.debug_str(Results->Classes[i]).string(),
|
|
Results->Classes[i],
|
|
Results->Ratings[Results->Classes[i]] * 100.0);
|
|
}
|
|
} /* PrintAdaptiveMatchResults */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void RemoveBadMatches(ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Results
|
|
contains matches to be filtered
|
|
** Globals:
|
|
** BadMatchPad
|
|
defines a "bad match"
|
|
** Operation: This routine steps thru each matching class in Results
|
|
** and removes it from the match list if its rating
|
|
** is worse than the BestRating plus a pad. In other words,
|
|
** all good matches get moved to the front of the classes
|
|
** array.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 13:51:03 1991, DSJ, Created.
|
|
*/
|
|
int Next, NextGood;
|
|
FLOAT32 *Rating = Results->Ratings;
|
|
CLASS_ID *Match = Results->Classes;
|
|
FLOAT32 BadMatchThreshold;
|
|
static const char* romans = "i v x I V X";
|
|
BadMatchThreshold = Results->BestRating + BadMatchPad;
|
|
|
|
if (bln_numericmode) {
|
|
UNICHAR_ID unichar_id_one = unicharset.contains_unichar("1") ?
|
|
unicharset.unichar_to_id("1") : -1;
|
|
UNICHAR_ID unichar_id_zero = unicharset.contains_unichar("0") ?
|
|
unicharset.unichar_to_id("0") : -1;
|
|
for (Next = NextGood = 0; Next < Results->NumMatches; Next++) {
|
|
if (Rating[Match[Next]] <= BadMatchThreshold) {
|
|
if (!unicharset.get_isalpha(Match[Next]) ||
|
|
strstr(romans, unicharset.id_to_unichar(Match[Next])) != NULL) {
|
|
Match[NextGood++] = Match[Next];
|
|
} else if (unichar_id_one >= 0 && unicharset.eq(Match[Next], "l") &&
|
|
Rating[unichar_id_one] >= BadMatchThreshold) {
|
|
Match[NextGood++] = unichar_id_one;
|
|
Rating[unichar_id_one] = Rating[unicharset.unichar_to_id("l")];
|
|
} else if (unichar_id_zero >= 0 && unicharset.eq(Match[Next], "O") &&
|
|
Rating[unichar_id_zero] >= BadMatchThreshold) {
|
|
Match[NextGood++] = unichar_id_zero;
|
|
Rating[unichar_id_zero] = Rating[unicharset.unichar_to_id("O")];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (Next = NextGood = 0; Next < Results->NumMatches; Next++) {
|
|
if (Rating[Match[Next]] <= BadMatchThreshold)
|
|
Match[NextGood++] = Match[Next];
|
|
}
|
|
}
|
|
|
|
Results->NumMatches = NextGood;
|
|
|
|
} /* RemoveBadMatches */
|
|
|
|
/*----------------------------------------------------------------------------------*/
|
|
void RemoveExtraPuncs(ADAPT_RESULTS *Results) {
|
|
/*
|
|
** Parameters:
|
|
** Results
|
|
contains matches to be filtered
|
|
** Globals:
|
|
** BadMatchPad
|
|
defines a "bad match"
|
|
** Operation: This routine steps thru each matching class in Results
|
|
** and removes it from the match list if its rating
|
|
** is worse than the BestRating plus a pad. In other words,
|
|
** all good matches get moved to the front of the classes
|
|
** array.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Mar 12 13:51:03 1991, DSJ, Created.
|
|
*/
|
|
int Next, NextGood;
|
|
int punc_count; /*no of garbage characters */
|
|
int digit_count;
|
|
CLASS_ID *Match = Results->Classes;
|
|
/*garbage characters */
|
|
static char punc_chars[] = ". , ; : / ` ~ ' - = \\ | \" ! _ ^";
|
|
static char digit_chars[] = "0 1 2 3 4 5 6 7 8 9";
|
|
|
|
punc_count = 0;
|
|
digit_count = 0;
|
|
for (Next = NextGood = 0; Next < Results->NumMatches; Next++) {
|
|
if (strstr (punc_chars,
|
|
unicharset.id_to_unichar(Match[Next])) == NULL) {
|
|
if (strstr (digit_chars,
|
|
unicharset.id_to_unichar(Match[Next])) == NULL) {
|
|
Match[NextGood++] = Match[Next];
|
|
}
|
|
else {
|
|
if (digit_count < 1)
|
|
Match[NextGood++] = Match[Next];
|
|
digit_count++;
|
|
}
|
|
}
|
|
else {
|
|
if (punc_count < 2)
|
|
Match[NextGood++] = Match[Next];
|
|
punc_count++; /*count them */
|
|
}
|
|
}
|
|
Results->NumMatches = NextGood;
|
|
} /* RemoveExtraPuncs */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void SetAdaptiveThreshold(FLOAT32 Threshold) {
|
|
/*
|
|
** Parameters:
|
|
** Threshold
|
|
threshold for creating new templates
|
|
** Globals:
|
|
** GoodAdaptiveMatch
|
|
default good match rating
|
|
** Operation: This routine resets the internal thresholds inside
|
|
** the integer matcher to correspond to the specified
|
|
** threshold.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Tue Apr 9 08:33:13 1991, DSJ, Created.
|
|
*/
|
|
if (Threshold == GoodAdaptiveMatch) {
|
|
/* the blob was probably classified correctly - use the default rating
|
|
threshold */
|
|
SetProtoThresh (0.9);
|
|
SetFeatureThresh (0.9);
|
|
}
|
|
else {
|
|
/* the blob was probably incorrectly classified */
|
|
SetProtoThresh (1.0 - Threshold);
|
|
SetFeatureThresh (1.0 - Threshold);
|
|
}
|
|
} /* SetAdaptiveThreshold */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void ShowBestMatchFor(TBLOB *Blob,
|
|
LINE_STATS *LineStats,
|
|
CLASS_ID ClassId,
|
|
BOOL8 AdaptiveOn,
|
|
BOOL8 PreTrainedOn) {
|
|
/*
|
|
** Parameters:
|
|
** Blob
|
|
blob to show best matching config for
|
|
** LineStats
|
|
statistics for text line Blob is in
|
|
** ClassId
|
|
class whose configs are to be searched
|
|
** AdaptiveOn
|
|
TRUE if adaptive configs are enabled
|
|
** PreTrainedOn
|
|
TRUE if pretrained configs are enabled
|
|
** Globals:
|
|
** PreTrainedTemplates
|
|
built-in training
|
|
** AdaptedTemplates
|
|
adaptive templates
|
|
** AllProtosOn
|
|
dummy proto mask
|
|
** AllConfigsOn
|
|
dummy config mask
|
|
** Operation: This routine compares Blob to both sets of templates
|
|
** (adaptive and pre-trained) and then displays debug
|
|
** information for the config which matched best.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Mar 22 08:43:52 1991, DSJ, Created.
|
|
*/
|
|
int NumCNFeatures = 0, NumBLFeatures = 0;
|
|
INT_FEATURE_ARRAY CNFeatures, BLFeatures;
|
|
INT_RESULT_STRUCT CNResult, BLResult;
|
|
CLASS_NORMALIZATION_ARRAY CNAdjust, BLAdjust;
|
|
CLASS_INDEX ClassIndex;
|
|
inT32 BlobLength;
|
|
uinT32 ConfigMask;
|
|
static int next_config = -1;
|
|
|
|
if (PreTrainedOn) next_config = -1;
|
|
|
|
CNResult.Rating = BLResult.Rating = 2.0;
|
|
|
|
if (!LegalClassId (ClassId)) {
|
|
cprintf ("%d is not a legal class id!!\n", ClassId);
|
|
return;
|
|
}
|
|
|
|
if (PreTrainedOn) {
|
|
if (UnusedClassIdIn (PreTrainedTemplates, ClassId))
|
|
cprintf ("No built-in templates for class %d = %s\n",
|
|
ClassId, unicharset.id_to_unichar(ClassId));
|
|
else {
|
|
NumCNFeatures = GetCharNormFeatures (Blob, LineStats,
|
|
PreTrainedTemplates,
|
|
CNFeatures, CNAdjust,
|
|
&BlobLength);
|
|
if (NumCNFeatures <= 0)
|
|
cprintf ("Illegal blob (char norm features)!\n");
|
|
else {
|
|
ClassIndex = PreTrainedTemplates->IndexFor[ClassId];
|
|
|
|
SetCharNormMatch();
|
|
IntegerMatcher (ClassForClassId (PreTrainedTemplates, ClassId),
|
|
AllProtosOn, AllConfigsOn,
|
|
BlobLength, NumCNFeatures, CNFeatures,
|
|
CNAdjust[ClassIndex], &CNResult, NO_DEBUG);
|
|
|
|
cprintf ("Best built-in template match is config %2d (%4.1f) (cn=%d)\n",
|
|
CNResult.Config, CNResult.Rating * 100.0, CNAdjust[ClassIndex]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AdaptiveOn) {
|
|
if (UnusedClassIdIn (AdaptedTemplates->Templates, ClassId))
|
|
cprintf ("No AD templates for class %d = %s\n",
|
|
ClassId, unicharset.id_to_unichar(ClassId));
|
|
else {
|
|
NumBLFeatures = GetBaselineFeatures (Blob, LineStats,
|
|
AdaptedTemplates->Templates,
|
|
BLFeatures, BLAdjust,
|
|
&BlobLength);
|
|
if (NumBLFeatures <= 0)
|
|
cprintf ("Illegal blob (baseline features)!\n");
|
|
else {
|
|
ClassIndex =AdaptedTemplates->Templates->IndexFor[ClassId];
|
|
|
|
SetBaseLineMatch();
|
|
IntegerMatcher (ClassForClassId
|
|
(AdaptedTemplates->Templates, ClassId),
|
|
AllProtosOn, AllConfigsOn,
|
|
// AdaptedTemplates->Class[ClassIndex]->PermProtos,
|
|
// AdaptedTemplates->Class[ClassIndex]->PermConfigs,
|
|
BlobLength, NumBLFeatures, BLFeatures,
|
|
BLAdjust[ClassIndex], &BLResult, NO_DEBUG);
|
|
|
|
#ifndef SECURE_NAMES
|
|
int ClassIndex = AdaptedTemplates->Templates->IndexFor[ClassId];
|
|
ADAPT_CLASS Class = AdaptedTemplates->Class[ClassIndex];
|
|
cprintf ("Best adaptive template match is config %2d (%4.1f) %s\n",
|
|
BLResult.Config, BLResult.Rating * 100.0,
|
|
ConfigIsPermanent(Class, BLResult.Config) ? "Perm" : "Temp");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
cprintf ("\n");
|
|
if (BLResult.Rating < CNResult.Rating) {
|
|
ClassIndex = AdaptedTemplates->Templates->IndexFor[ClassId];
|
|
if (next_config < 0) {
|
|
ConfigMask = 1 << BLResult.Config;
|
|
next_config = 0;
|
|
} else {
|
|
ConfigMask = 1 << next_config;
|
|
++next_config;
|
|
}
|
|
NormMethod = baseline;
|
|
|
|
SetBaseLineMatch();
|
|
IntegerMatcher (ClassForClassId (AdaptedTemplates->Templates, ClassId),
|
|
AllProtosOn,
|
|
// AdaptedTemplates->Class[ClassIndex]->PermProtos,
|
|
(BIT_VECTOR) & ConfigMask,
|
|
BlobLength, NumBLFeatures, BLFeatures,
|
|
BLAdjust[ClassIndex], &BLResult, MatchDebugFlags);
|
|
cprintf ("Adaptive template match for config %2d is %4.1f\n",
|
|
BLResult.Config, BLResult.Rating * 100.0);
|
|
}
|
|
else {
|
|
ClassIndex = PreTrainedTemplates->IndexFor[ClassId];
|
|
ConfigMask = 1 << CNResult.Config;
|
|
NormMethod = character;
|
|
|
|
SetCharNormMatch();
|
|
//xiaofan
|
|
IntegerMatcher (ClassForClassId (PreTrainedTemplates, ClassId), AllProtosOn, (BIT_VECTOR) & ConfigMask,
|
|
BlobLength, NumCNFeatures, CNFeatures,
|
|
CNAdjust[ClassIndex], &CNResult, MatchDebugFlags);
|
|
}
|
|
} /* ShowBestMatchFor */
|