mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-12 15:39:04 +08:00
524a61452d
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen closes #14 Commits:6317305
doxygen9f42f69
doxygen0fc4d52
doxygen37b4b55
fix typobded8f1
some more doxy020eb00
slight tweak524666d
doxygenify2a36a3e
doxygenify229d218
doxygenify7fd28ae
doxygenifya8c64bc
doxygenifyf5d21b6
fix5d8ede8
doxygenifya58a4e0
language_model.cppfa85709
lm_pain_points.cpp lm_state.cpp6418da3
merge06190ba
Merge branch 'old_doxygen_merge' into more-doxygen84acf08
Merge branch 'master' into more-doxygen50fe1ff
pagewalk.cpp cube_reco_context.cpp2982583
change to relative192a24a
applybox.cpp, take one8eeb053
delete docs for obsolete params52e4c77
modernise classify/ocrfeatures.cpp2a1cba6
modernise cutil/emalloc.cpp773e006
silence doxygen warningaeb1731
silence doxygen warningf18387f
silence doxygen; new params are unused?15ad6bd
doxygenify cutil/efio.cppc8b5dad
doxygenify cutil/danerror.cpp784450f
the globals and exceptions parts are obsolete; remove8bca324
doxygen classify/normfeat.cpp9bcbe16
doxygen classify/normmatch.cppaa9a971
doxygen ccmain/cube_control.cppc083ff2
doxygen ccmain/cube_reco_context.cppf842850
params changed5c94f12
doxygen ccmain/cubeclassifier.cpp15ba750
case sensitivef5c71d4
case sensitivef85655b
doxygen classify/intproto.cpp4bbc7aa
partial doxygen classify/mfx.cppdbb6041
partial doxygen classify/intproto.cpp2aa72db
finish doxygen classify/intproto.cpp0b8de99
doxygen training/mftraining.cpp0b5b35c
partial doxygen ccstruct/coutln.cppb81c766
partial doxygen ccstruct/coutln.cpp40fc415
finished? doxygen ccstruct/coutln.cpp6e4165c
doxygen classify/clusttool.cpp0267dec
doxygen classify/cutoffs.cpp7f0c70c
doxygen classify/fpoint.cpp512f3bd
ignore ~ files5668a52
doxygen classify/intmatcher.cpp84788d4
doxygen classify/kdtree.cpp29f36ca
doxygen classify/mfoutline.cpp40b94b1
silence doxygen warnings6c511b9
doxygen classify/mfx.cppf9b4080
doxygen classify/outfeat.cppaa1df05
doxygen classify/picofeat.cppcc5f466
doxygen training/cntraining.cppcce044f
doxygen training/commontraining.cpp167e216
missing param9498383
renamed params37eeac2
renamed paramd87b5dd
casec8ee174
renamed paramsb858db8
typo4c2a838
h2 context?81a2c0c
fix some param names; add some missing params, no docsbcf8a4c
add some missing params, no docsaf77f86
add some missing params, no docs; fix some param names01df24e
fix some params6161056
fix some params68508b6
fix some params285aeb6
doxygen complains here no matter what529bcfa
rm some missing params, typoscd21226
rm some missing params, add some new ones48a4bc2
fix paramsc844628
missing param312ce37
missing param; rename oneec2fdec
missing param05e15e0
missing paramsd515858
change "<" to < to make doxygen happyb476a28
wrong place
298 lines
8.4 KiB
C++
298 lines
8.4 KiB
C++
/**********************************************************************
|
|
* File: cube_object.cpp
|
|
* Description: Implementation of the Cube Object Class
|
|
* Author: Ahmad Abdulkader
|
|
* Created: 2007
|
|
*
|
|
* (C) Copyright 2008, Google Inc.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include <math.h>
|
|
#include "cube_object.h"
|
|
#include "cube_utils.h"
|
|
#include "word_list_lang_model.h"
|
|
|
|
namespace tesseract {
|
|
CubeObject::CubeObject(CubeRecoContext *cntxt, CharSamp *char_samp) {
|
|
Init();
|
|
char_samp_ = char_samp;
|
|
cntxt_ = cntxt;
|
|
}
|
|
|
|
CubeObject::CubeObject(CubeRecoContext *cntxt, Pix *pix,
|
|
int left, int top, int wid, int hgt) {
|
|
Init();
|
|
char_samp_ = CubeUtils::CharSampleFromPix(pix, left, top, wid, hgt);
|
|
own_char_samp_ = true;
|
|
cntxt_ = cntxt;
|
|
}
|
|
|
|
// Data member initialization function
|
|
void CubeObject::Init() {
|
|
char_samp_ = NULL;
|
|
own_char_samp_ = false;
|
|
alt_list_ = NULL;
|
|
srch_obj_ = NULL;
|
|
deslanted_alt_list_ = NULL;
|
|
deslanted_srch_obj_ = NULL;
|
|
deslanted_ = false;
|
|
deslanted_char_samp_ = NULL;
|
|
beam_obj_ = NULL;
|
|
deslanted_beam_obj_ = NULL;
|
|
cntxt_ = NULL;
|
|
}
|
|
|
|
// Cleanup function
|
|
void CubeObject::Cleanup() {
|
|
if (alt_list_ != NULL) {
|
|
delete alt_list_;
|
|
alt_list_ = NULL;
|
|
}
|
|
|
|
if (deslanted_alt_list_ != NULL) {
|
|
delete deslanted_alt_list_;
|
|
deslanted_alt_list_ = NULL;
|
|
}
|
|
}
|
|
|
|
CubeObject::~CubeObject() {
|
|
if (char_samp_ != NULL && own_char_samp_ == true) {
|
|
delete char_samp_;
|
|
char_samp_ = NULL;
|
|
}
|
|
|
|
if (srch_obj_ != NULL) {
|
|
delete srch_obj_;
|
|
srch_obj_ = NULL;
|
|
}
|
|
|
|
if (deslanted_srch_obj_ != NULL) {
|
|
delete deslanted_srch_obj_;
|
|
deslanted_srch_obj_ = NULL;
|
|
}
|
|
|
|
if (beam_obj_ != NULL) {
|
|
delete beam_obj_;
|
|
beam_obj_ = NULL;
|
|
}
|
|
|
|
if (deslanted_beam_obj_ != NULL) {
|
|
delete deslanted_beam_obj_;
|
|
deslanted_beam_obj_ = NULL;
|
|
}
|
|
|
|
if (deslanted_char_samp_ != NULL) {
|
|
delete deslanted_char_samp_;
|
|
deslanted_char_samp_ = NULL;
|
|
}
|
|
|
|
Cleanup();
|
|
}
|
|
|
|
/**
|
|
* Actually do the recognition using the specified language mode. If none
|
|
* is specified, the default language model in the CubeRecoContext is used.
|
|
* @return the sorted list of alternate answers
|
|
* @param word_mode determines whether recognition is done as a word or a phrase
|
|
*/
|
|
WordAltList *CubeObject::Recognize(LangModel *lang_mod, bool word_mode) {
|
|
if (char_samp_ == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// clear alt lists
|
|
Cleanup();
|
|
|
|
// no specified language model, use the one in the reco context
|
|
if (lang_mod == NULL) {
|
|
lang_mod = cntxt_->LangMod();
|
|
}
|
|
|
|
// normalize if necessary
|
|
if (cntxt_->SizeNormalization()) {
|
|
Normalize();
|
|
}
|
|
|
|
// assume not de-slanted by default
|
|
deslanted_ = false;
|
|
|
|
// create a beam search object
|
|
if (beam_obj_ == NULL) {
|
|
beam_obj_ = new BeamSearch(cntxt_, word_mode);
|
|
if (beam_obj_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not construct "
|
|
"BeamSearch\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// create a cube search object
|
|
if (srch_obj_ == NULL) {
|
|
srch_obj_ = new CubeSearchObject(cntxt_, char_samp_);
|
|
if (srch_obj_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not construct "
|
|
"CubeSearchObject\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// run a beam search against the tesslang model
|
|
alt_list_ = beam_obj_->Search(srch_obj_, lang_mod);
|
|
|
|
// deslant (if supported by language) and re-reco if probability is low enough
|
|
if (cntxt_->HasItalics() == true &&
|
|
(alt_list_ == NULL || alt_list_->AltCount() < 1 ||
|
|
alt_list_->AltCost(0) > CubeUtils::Prob2Cost(kMinProbSkipDeslanted))) {
|
|
|
|
if (deslanted_beam_obj_ == NULL) {
|
|
deslanted_beam_obj_ = new BeamSearch(cntxt_);
|
|
if (deslanted_beam_obj_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not "
|
|
"construct deslanted BeamSearch\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (deslanted_srch_obj_ == NULL) {
|
|
deslanted_char_samp_ = char_samp_->Clone();
|
|
if (deslanted_char_samp_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not "
|
|
"construct deslanted CharSamp\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (deslanted_char_samp_->Deslant() == false) {
|
|
return NULL;
|
|
}
|
|
|
|
deslanted_srch_obj_ = new CubeSearchObject(cntxt_, deslanted_char_samp_);
|
|
if (deslanted_srch_obj_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not "
|
|
"construct deslanted CubeSearchObject\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// run a beam search against the tesslang model
|
|
deslanted_alt_list_ = deslanted_beam_obj_->Search(deslanted_srch_obj_,
|
|
lang_mod);
|
|
// should we use de-slanted altlist?
|
|
if (deslanted_alt_list_ != NULL && deslanted_alt_list_->AltCount() > 0) {
|
|
if (alt_list_ == NULL || alt_list_->AltCount() < 1 ||
|
|
deslanted_alt_list_->AltCost(0) < alt_list_->AltCost(0)) {
|
|
deslanted_ = true;
|
|
return deslanted_alt_list_;
|
|
}
|
|
}
|
|
}
|
|
|
|
return alt_list_;
|
|
}
|
|
|
|
/**
|
|
* Recognize the member char sample as a word
|
|
*/
|
|
WordAltList *CubeObject::RecognizeWord(LangModel *lang_mod) {
|
|
return Recognize(lang_mod, true);
|
|
}
|
|
|
|
/**
|
|
* Recognize the member char sample as a phrase
|
|
*/
|
|
WordAltList *CubeObject::RecognizePhrase(LangModel *lang_mod) {
|
|
return Recognize(lang_mod, false);
|
|
}
|
|
|
|
/**
|
|
* Computes the cost of a specific string. This is done by performing
|
|
* recognition of a language model that allows only the specified word
|
|
*/
|
|
int CubeObject::WordCost(const char *str) {
|
|
WordListLangModel *lang_mod = new WordListLangModel(cntxt_);
|
|
if (lang_mod == NULL) {
|
|
return WORST_COST;
|
|
}
|
|
|
|
if (lang_mod->AddString(str) == false) {
|
|
delete lang_mod;
|
|
return WORST_COST;
|
|
}
|
|
|
|
// run a beam search against the single string wordlist model
|
|
WordAltList *alt_list = RecognizeWord(lang_mod);
|
|
delete lang_mod;
|
|
|
|
int cost = WORST_COST;
|
|
if (alt_list != NULL) {
|
|
if (alt_list->AltCount() > 0) {
|
|
cost = alt_list->AltCost(0);
|
|
}
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
// Recognizes a single character and returns the list of results.
|
|
CharAltList *CubeObject::RecognizeChar() {
|
|
if (char_samp_ == NULL) return NULL;
|
|
CharAltList* alt_list = NULL;
|
|
CharClassifier *char_classifier = cntxt_->Classifier();
|
|
ASSERT_HOST(char_classifier != NULL);
|
|
alt_list = char_classifier->Classify(char_samp_);
|
|
return alt_list;
|
|
}
|
|
|
|
// Normalize the input word bitmap to have a minimum aspect ratio
|
|
bool CubeObject::Normalize() {
|
|
// create a cube search object
|
|
CubeSearchObject *srch_obj = new CubeSearchObject(cntxt_, char_samp_);
|
|
if (srch_obj == NULL) {
|
|
return false;
|
|
}
|
|
// Perform over-segmentation
|
|
int seg_cnt = srch_obj->SegPtCnt();
|
|
// Only perform normalization if segment count is large enough
|
|
if (seg_cnt < kMinNormalizationSegmentCnt) {
|
|
delete srch_obj;
|
|
return true;
|
|
}
|
|
// compute the mean AR of the segments
|
|
double ar_mean = 0.0;
|
|
for (int seg_idx = 0; seg_idx <= seg_cnt; seg_idx++) {
|
|
CharSamp *seg_samp = srch_obj->CharSample(seg_idx - 1, seg_idx);
|
|
if (seg_samp != NULL && seg_samp->Width() > 0) {
|
|
ar_mean += (1.0 * seg_samp->Height() / seg_samp->Width());
|
|
}
|
|
}
|
|
ar_mean /= (seg_cnt + 1);
|
|
// perform normalization if segment AR is too high
|
|
if (ar_mean > kMinNormalizationAspectRatio) {
|
|
// scale down the image in the y-direction to attain AR
|
|
CharSamp *new_samp = char_samp_->Scale(char_samp_->Width(),
|
|
2.0 * char_samp_->Height() / ar_mean,
|
|
false);
|
|
if (new_samp != NULL) {
|
|
// free existing char samp if owned
|
|
if (own_char_samp_) {
|
|
delete char_samp_;
|
|
}
|
|
// update with new scaled charsamp and set ownership flag
|
|
char_samp_ = new_samp;
|
|
own_char_samp_ = true;
|
|
}
|
|
}
|
|
delete srch_obj;
|
|
return true;
|
|
}
|
|
}
|