tesseract/arch/dotproductsse.cpp
Stefan Weil e7794c0c72 arch: Replace Tesseract data types by POSIX data types
Signed-off-by: Stefan Weil <sw@weilnetz.de>
2017-05-02 18:21:44 +02:00

142 lines
4.9 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: dotproductsse.cpp
// Description: Architecture-specific dot-product function.
// Author: Ray Smith
// Created: Wed Jul 22 10:57:45 PDT 2015
//
// (C) Copyright 2015, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#if !defined(__SSE4_1__)
// This code can't compile with "-msse4.1", so use dummy stubs.
#include "dotproductsse.h"
#include <stdio.h>
#include <stdlib.h>
namespace tesseract {
double DotProductSSE(const double* u, const double* v, int n) {
fprintf(stderr, "DotProductSSE can't be used on Android\n");
abort();
}
int32_t IntDotProductSSE(const int8_t* u, const int8_t* v, int n) {
fprintf(stderr, "IntDotProductSSE can't be used on Android\n");
abort();
}
} // namespace tesseract
#else // !defined(__SSE4_1__)
// Non-Android code here
#include <emmintrin.h>
#include <smmintrin.h>
#include <stdint.h>
#include "dotproductsse.h"
#include "host.h"
namespace tesseract {
// Computes and returns the dot product of the n-vectors u and v.
// Uses Intel SSE intrinsics to access the SIMD instruction set.
double DotProductSSE(const double* u, const double* v, int n) {
int max_offset = n - 2;
int offset = 0;
// Accumulate a set of 2 sums in sum, by loading pairs of 2 values from u and
// v, and multiplying them together in parallel.
__m128d sum = _mm_setzero_pd();
if (offset <= max_offset) {
offset = 2;
// Aligned load is reputedly faster but requires 16 byte aligned input.
if ((reinterpret_cast<const uintptr_t>(u) & 15) == 0 &&
(reinterpret_cast<const uintptr_t>(v) & 15) == 0) {
// Use aligned load.
sum = _mm_load_pd(u);
__m128d floats2 = _mm_load_pd(v);
// Multiply.
sum = _mm_mul_pd(sum, floats2);
while (offset <= max_offset) {
__m128d floats1 = _mm_load_pd(u + offset);
floats2 = _mm_load_pd(v + offset);
offset += 2;
floats1 = _mm_mul_pd(floats1, floats2);
sum = _mm_add_pd(sum, floats1);
}
} else {
// Use unaligned load.
sum = _mm_loadu_pd(u);
__m128d floats2 = _mm_loadu_pd(v);
// Multiply.
sum = _mm_mul_pd(sum, floats2);
while (offset <= max_offset) {
__m128d floats1 = _mm_loadu_pd(u + offset);
floats2 = _mm_loadu_pd(v + offset);
offset += 2;
floats1 = _mm_mul_pd(floats1, floats2);
sum = _mm_add_pd(sum, floats1);
}
}
}
// Add the 2 sums in sum horizontally.
sum = _mm_hadd_pd(sum, sum);
// Extract the low result.
double result = _mm_cvtsd_f64(sum);
// Add on any left-over products.
while (offset < n) {
result += u[offset] * v[offset];
++offset;
}
return result;
}
// Computes and returns the dot product of the n-vectors u and v.
// Uses Intel SSE intrinsics to access the SIMD instruction set.
int32_t IntDotProductSSE(const int8_t* u, const int8_t* v, int n) {
int max_offset = n - 8;
int offset = 0;
// Accumulate a set of 4 32-bit sums in sum, by loading 8 pairs of 8-bit
// values, extending to 16 bit, multiplying to make 32 bit results.
__m128i sum = _mm_setzero_si128();
if (offset <= max_offset) {
offset = 8;
__m128i packed1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(u));
__m128i packed2 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(v));
sum = _mm_cvtepi8_epi16(packed1);
packed2 = _mm_cvtepi8_epi16(packed2);
// The magic _mm_add_epi16 is perfect here. It multiplies 8 pairs of 16 bit
// ints to make 32 bit results, which are then horizontally added in pairs
// to make 4 32 bit results that still fit in a 128 bit register.
sum = _mm_madd_epi16(sum, packed2);
while (offset <= max_offset) {
packed1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(u + offset));
packed2 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(v + offset));
offset += 8;
packed1 = _mm_cvtepi8_epi16(packed1);
packed2 = _mm_cvtepi8_epi16(packed2);
packed1 = _mm_madd_epi16(packed1, packed2);
sum = _mm_add_epi32(sum, packed1);
}
}
// Sum the 4 packed 32 bit sums and extract the low result.
sum = _mm_hadd_epi32(sum, sum);
sum = _mm_hadd_epi32(sum, sum);
int32_t result = _mm_cvtsi128_si32(sum);
while (offset < n) {
result += u[offset] * v[offset];
++offset;
}
return result;
}
} // namespace tesseract.
#endif // ANDROID_BUILD