tesseract/wordrec/chopper.cpp

661 lines
22 KiB
C++

/* -*-C-*-
********************************************************************************
*
* File: chopper.c (Formerly chopper.c)
* Description:
* Author: Mark Seaman, OCR Technology
* Created: Fri Oct 16 14:37:00 1987
* Modified: Tue Jul 30 16:18:52 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Reusable Software Component
*
* (c) Copyright 1987, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
----------------------------------------------------------------------*/
#include <math.h>
#include "chopper.h"
#include "assert.h"
#include "associate.h"
#include "blobs.h"
#include "callcpp.h"
#include "const.h"
#include "findseam.h"
#include "freelist.h"
#include "globals.h"
#include "render.h"
#include "pageres.h"
#include "seam.h"
#include "stopper.h"
#include "structures.h"
#include "unicharset.h"
#include "wordrec.h"
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
// Even though the limit on the number of chunks may now be removed, keep
// the same limit for repeatable behavior, and it may be a speed advantage.
static const int kMaxNumChunks = 64;
/*----------------------------------------------------------------------
F u n c t i o n s
----------------------------------------------------------------------*/
/**
* @name preserve_outline_tree
*
* Copy the list of outlines.
*/
void preserve_outline(EDGEPT *start) {
EDGEPT *srcpt;
if (start == NULL)
return;
srcpt = start;
do {
srcpt->flags[1] = 1;
srcpt = srcpt->next;
}
while (srcpt != start);
srcpt->flags[1] = 2;
}
/**************************************************************************/
void preserve_outline_tree(TESSLINE *srcline) {
TESSLINE *outline;
for (outline = srcline; outline != NULL; outline = outline->next) {
preserve_outline (outline->loop);
}
}
/**
* @name restore_outline_tree
*
* Copy the list of outlines.
*/
EDGEPT *restore_outline(EDGEPT *start) {
EDGEPT *srcpt;
EDGEPT *real_start;
if (start == NULL)
return NULL;
srcpt = start;
do {
if (srcpt->flags[1] == 2)
break;
srcpt = srcpt->next;
}
while (srcpt != start);
real_start = srcpt;
do {
srcpt = srcpt->next;
if (srcpt->prev->flags[1] == 0) {
remove_edgept(srcpt->prev);
}
}
while (srcpt != real_start);
return real_start;
}
/******************************************************************************/
void restore_outline_tree(TESSLINE *srcline) {
TESSLINE *outline;
for (outline = srcline; outline != NULL; outline = outline->next) {
outline->loop = restore_outline (outline->loop);
outline->start = outline->loop->pos;
}
}
// Helper runs all the checks on a seam to make sure it is valid.
// Returns the seam if OK, otherwise deletes the seam and returns NULL.
static SEAM* CheckSeam(int debug_level, inT32 blob_number, TWERD* word,
TBLOB* blob, TBLOB* other_blob,
const GenericVector<SEAM*>& seams, SEAM* seam) {
if (seam == NULL || blob->outlines == NULL || other_blob->outlines == NULL ||
total_containment(blob, other_blob) || check_blob(other_blob) ||
!seam->ContainedByBlob(*blob) || !seam->ContainedByBlob(*other_blob) ||
any_shared_split_points(seams, seam) ||
!seam->PrepareToInsertSeam(seams, word->blobs, blob_number, false)) {
word->blobs.remove(blob_number + 1);
if (seam) {
seam->UndoSeam(blob, other_blob);
delete seam;
seam = NULL;
#ifndef GRAPHICS_DISABLED
if (debug_level) {
if (debug_level >2)
display_blob(blob, Red);
tprintf("\n** seam being removed ** \n");
}
#endif
} else {
delete other_blob;
}
return NULL;
}
return seam;
}
/**
* @name attempt_blob_chop
*
* Try to split the this blob after this one. Check to make sure that
* it was successful.
*/
namespace tesseract {
SEAM *Wordrec::attempt_blob_chop(TWERD *word, TBLOB *blob, inT32 blob_number,
bool italic_blob,
const GenericVector<SEAM*>& seams) {
if (repair_unchopped_blobs)
preserve_outline_tree (blob->outlines);
TBLOB *other_blob = TBLOB::ShallowCopy(*blob); /* Make new blob */
// Insert it into the word.
word->blobs.insert(other_blob, blob_number + 1);
SEAM *seam = NULL;
if (prioritize_division) {
TPOINT location;
if (divisible_blob(blob, italic_blob, &location)) {
seam = new SEAM(0.0f, location);
}
}
if (seam == NULL)
seam = pick_good_seam(blob);
if (chop_debug) {
if (seam != NULL)
seam->Print("Good seam picked=");
else
tprintf("\n** no seam picked *** \n");
}
if (seam) {
seam->ApplySeam(italic_blob, blob, other_blob);
}
seam = CheckSeam(chop_debug, blob_number, word, blob, other_blob,
seams, seam);
if (seam == NULL) {
if (repair_unchopped_blobs)
restore_outline_tree(blob->outlines);
if (allow_blob_division && !prioritize_division) {
// If the blob can simply be divided into outlines, then do that.
TPOINT location;
if (divisible_blob(blob, italic_blob, &location)) {
other_blob = TBLOB::ShallowCopy(*blob); /* Make new blob */
word->blobs.insert(other_blob, blob_number + 1);
seam = new SEAM(0.0f, location);
seam->ApplySeam(italic_blob, blob, other_blob);
seam = CheckSeam(chop_debug, blob_number, word, blob, other_blob,
seams, seam);
}
}
}
if (seam != NULL) {
// Make sure this seam doesn't get chopped again.
seam->Finalize();
}
return seam;
}
SEAM *Wordrec::chop_numbered_blob(TWERD *word, inT32 blob_number,
bool italic_blob,
const GenericVector<SEAM*>& seams) {
return attempt_blob_chop(word, word->blobs[blob_number], blob_number,
italic_blob, seams);
}
SEAM *Wordrec::chop_overlapping_blob(const GenericVector<TBOX>& boxes,
bool italic_blob, WERD_RES *word_res,
int *blob_number) {
TWERD *word = word_res->chopped_word;
for (*blob_number = 0; *blob_number < word->NumBlobs(); ++*blob_number) {
TBLOB *blob = word->blobs[*blob_number];
TPOINT topleft, botright;
topleft.x = blob->bounding_box().left();
topleft.y = blob->bounding_box().top();
botright.x = blob->bounding_box().right();
botright.y = blob->bounding_box().bottom();
TPOINT original_topleft, original_botright;
word_res->denorm.DenormTransform(NULL, topleft, &original_topleft);
word_res->denorm.DenormTransform(NULL, botright, &original_botright);
TBOX original_box = TBOX(original_topleft.x, original_botright.y,
original_botright.x, original_topleft.y);
bool almost_equal_box = false;
int num_overlap = 0;
for (int i = 0; i < boxes.size(); i++) {
if (original_box.overlap_fraction(boxes[i]) > 0.125)
num_overlap++;
if (original_box.almost_equal(boxes[i], 3))
almost_equal_box = true;
}
TPOINT location;
if (divisible_blob(blob, italic_blob, &location) ||
(!almost_equal_box && num_overlap > 1)) {
SEAM *seam = attempt_blob_chop(word, blob, *blob_number,
italic_blob, word_res->seam_array);
if (seam != NULL)
return seam;
}
}
*blob_number = -1;
return NULL;
}
} // namespace tesseract
/**
* @name any_shared_split_points
*
* Return true if any of the splits share a point with this one.
*/
int any_shared_split_points(const GenericVector<SEAM*>& seams, SEAM *seam) {
int length;
int index;
length = seams.size();
for (index = 0; index < length; index++)
if (seam->SharesPosition(*seams[index])) return TRUE;
return FALSE;
}
/**
* @name check_blob
*
* @return true if blob has a non whole outline.
*/
int check_blob(TBLOB *blob) {
TESSLINE *outline;
EDGEPT *edgept;
for (outline = blob->outlines; outline != NULL; outline = outline->next) {
edgept = outline->loop;
do {
if (edgept == NULL)
break;
edgept = edgept->next;
}
while (edgept != outline->loop);
if (edgept == NULL)
return 1;
}
return 0;
}
namespace tesseract {
/**
* @name improve_one_blob
*
* Finds the best place to chop, based on the worst blob, fixpt, or next to
* a fragment, according to the input. Returns the SEAM corresponding to the
* chop point, if any is found, and the index in the ratings_matrix of the
* chopped blob. Note that blob_choices is just a copy of the pointers in the
* leading diagonal of the ratings MATRIX.
* Although the blob is chopped, the returned SEAM is yet to be inserted into
* word->seam_array and the resulting blobs are unclassified, so this function
* can be used by ApplyBox as well as during recognition.
*/
SEAM* Wordrec::improve_one_blob(const GenericVector<BLOB_CHOICE*>& blob_choices,
DANGERR *fixpt,
bool split_next_to_fragment,
bool italic_blob,
WERD_RES* word,
int* blob_number) {
float rating_ceiling = MAX_FLOAT32;
SEAM *seam = NULL;
do {
*blob_number = select_blob_to_split_from_fixpt(fixpt);
if (chop_debug) tprintf("blob_number from fixpt = %d\n", *blob_number);
bool split_point_from_dict = (*blob_number != -1);
if (split_point_from_dict) {
fixpt->clear();
} else {
*blob_number = select_blob_to_split(blob_choices, rating_ceiling,
split_next_to_fragment);
}
if (chop_debug) tprintf("blob_number = %d\n", *blob_number);
if (*blob_number == -1)
return NULL;
// TODO(rays) it may eventually help to allow italic_blob to be true,
seam = chop_numbered_blob(word->chopped_word, *blob_number, italic_blob,
word->seam_array);
if (seam != NULL)
return seam; // Success!
if (blob_choices[*blob_number] == NULL)
return NULL;
if (!split_point_from_dict) {
// We chopped the worst rated blob, try something else next time.
rating_ceiling = blob_choices[*blob_number]->rating();
}
} while (true);
return seam;
}
/**
* @name chop_one_blob
*
* Start with the current one-blob word and its classification. Find
* the worst blobs and try to divide it up to improve the ratings.
* Used for testing chopper.
*/
SEAM* Wordrec::chop_one_blob(const GenericVector<TBOX>& boxes,
const GenericVector<BLOB_CHOICE*>& blob_choices,
WERD_RES* word_res,
int* blob_number) {
if (prioritize_division) {
return chop_overlapping_blob(boxes, true, word_res, blob_number);
} else {
return improve_one_blob(blob_choices, NULL, false, true, word_res,
blob_number);
}
}
/**
* @name chop_word_main
*
* Classify the blobs in this word and permute the results. Find the
* worst blob in the word and chop it up. Continue this process until
* a good answer has been found or all the blobs have been chopped up
* enough. The results are returned in the WERD_RES.
*/
void Wordrec::chop_word_main(WERD_RES *word) {
int num_blobs = word->chopped_word->NumBlobs();
if (word->ratings == NULL) {
word->ratings = new MATRIX(num_blobs, wordrec_max_join_chunks);
}
if (word->ratings->get(0, 0) == NULL) {
// Run initial classification.
for (int b = 0; b < num_blobs; ++b) {
BLOB_CHOICE_LIST* choices = classify_piece(word->seam_array, b, b,
"Initial:", word->chopped_word,
word->blamer_bundle);
word->ratings->put(b, b, choices);
}
} else {
// Blobs have been pre-classified. Set matrix cell for all blob choices
for (int col = 0; col < word->ratings->dimension(); ++col) {
for (int row = col; row < word->ratings->dimension() &&
row < col + word->ratings->bandwidth(); ++row) {
BLOB_CHOICE_LIST* choices = word->ratings->get(col, row);
if (choices != NULL) {
BLOB_CHOICE_IT bc_it(choices);
for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) {
bc_it.data()->set_matrix_cell(col, row);
}
}
}
}
}
// Run Segmentation Search.
BestChoiceBundle best_choice_bundle(word->ratings->dimension());
SegSearch(word, &best_choice_bundle, word->blamer_bundle);
if (word->best_choice == NULL) {
// SegSearch found no valid paths, so just use the leading diagonal.
word->FakeWordFromRatings(TOP_CHOICE_PERM);
}
word->RebuildBestState();
// If we finished without a hyphen at the end of the word, let the next word
// be found in the dictionary.
if (word->word->flag(W_EOL) &&
!getDict().has_hyphen_end(*word->best_choice)) {
getDict().reset_hyphen_vars(true);
}
if (word->blamer_bundle != NULL && this->fill_lattice_ != NULL) {
CallFillLattice(*word->ratings, word->best_choices,
*word->uch_set, word->blamer_bundle);
}
if (wordrec_debug_level > 0) {
tprintf("Final Ratings Matrix:\n");
word->ratings->print(getDict().getUnicharset());
}
word->FilterWordChoices(getDict().stopper_debug_level);
}
/**
* @name improve_by_chopping
*
* Repeatedly chops the worst blob, classifying the new blobs fixing up all
* the data, and incrementally runs the segmentation search until a good word
* is found, or no more chops can be found.
*/
void Wordrec::improve_by_chopping(float rating_cert_scale,
WERD_RES* word,
BestChoiceBundle* best_choice_bundle,
BlamerBundle* blamer_bundle,
LMPainPoints* pain_points,
GenericVector<SegSearchPending>* pending) {
int blob_number;
do { // improvement loop.
// Make a simple vector of BLOB_CHOICEs to make it easy to pick which
// one to chop.
GenericVector<BLOB_CHOICE*> blob_choices;
int num_blobs = word->ratings->dimension();
for (int i = 0; i < num_blobs; ++i) {
BLOB_CHOICE_LIST* choices = word->ratings->get(i, i);
if (choices == NULL || choices->empty()) {
blob_choices.push_back(NULL);
} else {
BLOB_CHOICE_IT bc_it(choices);
blob_choices.push_back(bc_it.data());
}
}
SEAM* seam = improve_one_blob(blob_choices, &best_choice_bundle->fixpt,
false, false, word, &blob_number);
if (seam == NULL) break;
// A chop has been made. We have to correct all the data structures to
// take into account the extra bottom-level blob.
// Put the seam into the seam_array and correct everything else on the
// word: ratings matrix (including matrix location in the BLOB_CHOICES),
// states in WERD_CHOICEs, and blob widths.
word->InsertSeam(blob_number, seam);
// Insert a new entry in the beam array.
best_choice_bundle->beam.insert(new LanguageModelState, blob_number);
// Fixpts are outdated, but will get recalculated.
best_choice_bundle->fixpt.clear();
// Remap existing pain points.
pain_points->RemapForSplit(blob_number);
// Insert a new pending at the chop point.
pending->insert(SegSearchPending(), blob_number);
// Classify the two newly created blobs using ProcessSegSearchPainPoint,
// as that updates the pending correctly and adds new pain points.
MATRIX_COORD pain_point(blob_number, blob_number);
ProcessSegSearchPainPoint(0.0f, pain_point, "Chop1", pending, word,
pain_points, blamer_bundle);
pain_point.col = blob_number + 1;
pain_point.row = blob_number + 1;
ProcessSegSearchPainPoint(0.0f, pain_point, "Chop2", pending, word,
pain_points, blamer_bundle);
if (language_model_->language_model_ngram_on) {
// N-gram evaluation depends on the number of blobs in a chunk, so we
// have to re-evaluate everything in the word.
ResetNGramSearch(word, best_choice_bundle, pending);
blob_number = 0;
}
// Run language model incrementally. (Except with the n-gram model on.)
UpdateSegSearchNodes(rating_cert_scale, blob_number, pending,
word, pain_points, best_choice_bundle, blamer_bundle);
} while (!language_model_->AcceptableChoiceFound() &&
word->ratings->dimension() < kMaxNumChunks);
// If after running only the chopper best_choice is incorrect and no blame
// has been yet set, blame the classifier if best_choice is classifier's
// top choice and is a dictionary word (i.e. language model could not have
// helped). Otherwise blame the tradeoff between the classifier and
// the old language model (permuters).
if (word->blamer_bundle != NULL &&
word->blamer_bundle->incorrect_result_reason() == IRR_CORRECT &&
!word->blamer_bundle->ChoiceIsCorrect(word->best_choice)) {
bool valid_permuter = word->best_choice != NULL &&
Dict::valid_word_permuter(word->best_choice->permuter(), false);
word->blamer_bundle->BlameClassifierOrLangModel(word,
getDict().getUnicharset(),
valid_permuter,
wordrec_debug_blamer);
}
}
/**********************************************************************
* select_blob_to_split
*
* These are the results of the last classification. Find a likely
* place to apply splits. If none, return -1.
**********************************************************************/
int Wordrec::select_blob_to_split(
const GenericVector<BLOB_CHOICE*>& blob_choices,
float rating_ceiling, bool split_next_to_fragment) {
BLOB_CHOICE *blob_choice;
int x;
float worst = -MAX_FLOAT32;
int worst_index = -1;
float worst_near_fragment = -MAX_FLOAT32;
int worst_index_near_fragment = -1;
const CHAR_FRAGMENT **fragments = NULL;
if (chop_debug) {
if (rating_ceiling < MAX_FLOAT32)
tprintf("rating_ceiling = %8.4f\n", rating_ceiling);
else
tprintf("rating_ceiling = No Limit\n");
}
if (split_next_to_fragment && blob_choices.size() > 0) {
fragments = new const CHAR_FRAGMENT *[blob_choices.length()];
if (blob_choices[0] != NULL) {
fragments[0] = getDict().getUnicharset().get_fragment(
blob_choices[0]->unichar_id());
} else {
fragments[0] = NULL;
}
}
for (x = 0; x < blob_choices.size(); ++x) {
if (blob_choices[x] == NULL) {
if (fragments != NULL) {
delete[] fragments;
}
return x;
} else {
blob_choice = blob_choices[x];
// Populate fragments for the following position.
if (split_next_to_fragment && x+1 < blob_choices.size()) {
if (blob_choices[x + 1] != NULL) {
fragments[x + 1] = getDict().getUnicharset().get_fragment(
blob_choices[x + 1]->unichar_id());
} else {
fragments[x + 1] = NULL;
}
}
if (blob_choice->rating() < rating_ceiling &&
blob_choice->certainty() < tessedit_certainty_threshold) {
// Update worst and worst_index.
if (blob_choice->rating() > worst) {
worst_index = x;
worst = blob_choice->rating();
}
if (split_next_to_fragment) {
// Update worst_near_fragment and worst_index_near_fragment.
bool expand_following_fragment =
(x + 1 < blob_choices.size() &&
fragments[x+1] != NULL && !fragments[x+1]->is_beginning());
bool expand_preceding_fragment =
(x > 0 && fragments[x-1] != NULL && !fragments[x-1]->is_ending());
if ((expand_following_fragment || expand_preceding_fragment) &&
blob_choice->rating() > worst_near_fragment) {
worst_index_near_fragment = x;
worst_near_fragment = blob_choice->rating();
if (chop_debug) {
tprintf("worst_index_near_fragment=%d"
" expand_following_fragment=%d"
" expand_preceding_fragment=%d\n",
worst_index_near_fragment,
expand_following_fragment,
expand_preceding_fragment);
}
}
}
}
}
}
if (fragments != NULL) {
delete[] fragments;
}
// TODO(daria): maybe a threshold of badness for
// worst_near_fragment would be useful.
return worst_index_near_fragment != -1 ?
worst_index_near_fragment : worst_index;
}
/**********************************************************************
* select_blob_to_split_from_fixpt
*
* Given the fix point from a dictionary search, if there is a single
* dangerous blob that maps to multiple characters, return that blob
* index as a place we need to split. If none, return -1.
**********************************************************************/
int Wordrec::select_blob_to_split_from_fixpt(DANGERR *fixpt) {
if (!fixpt)
return -1;
for (int i = 0; i < fixpt->size(); i++) {
if ((*fixpt)[i].begin + 1 == (*fixpt)[i].end &&
(*fixpt)[i].dangerous &&
(*fixpt)[i].correct_is_ngram) {
return (*fixpt)[i].begin;
}
}
return -1;
}
} // namespace tesseract
/**********************************************************************
* total_containment
*
* Check to see if one of these outlines is totally contained within
* the bounding box of the other.
**********************************************************************/
inT16 total_containment(TBLOB *blob1, TBLOB *blob2) {
TBOX box1 = blob1->bounding_box();
TBOX box2 = blob2->bounding_box();
return box1.contains(box2) || box2.contains(box1);
}