mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-19 15:03:45 +08:00
661 lines
22 KiB
C++
661 lines
22 KiB
C++
/* -*-C-*-
|
|
********************************************************************************
|
|
*
|
|
* File: chopper.c (Formerly chopper.c)
|
|
* Description:
|
|
* Author: Mark Seaman, OCR Technology
|
|
* Created: Fri Oct 16 14:37:00 1987
|
|
* Modified: Tue Jul 30 16:18:52 1991 (Mark Seaman) marks@hpgrlt
|
|
* Language: C
|
|
* Package: N/A
|
|
* Status: Reusable Software Component
|
|
*
|
|
* (c) Copyright 1987, Hewlett-Packard Company.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/*----------------------------------------------------------------------
|
|
I n c l u d e s
|
|
----------------------------------------------------------------------*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "chopper.h"
|
|
|
|
#include "assert.h"
|
|
#include "associate.h"
|
|
#include "blobs.h"
|
|
#include "callcpp.h"
|
|
#include "const.h"
|
|
#include "findseam.h"
|
|
#include "freelist.h"
|
|
#include "globals.h"
|
|
#include "render.h"
|
|
#include "pageres.h"
|
|
#include "seam.h"
|
|
#include "stopper.h"
|
|
#include "structures.h"
|
|
#include "unicharset.h"
|
|
#include "wordrec.h"
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
// Even though the limit on the number of chunks may now be removed, keep
|
|
// the same limit for repeatable behavior, and it may be a speed advantage.
|
|
static const int kMaxNumChunks = 64;
|
|
|
|
/*----------------------------------------------------------------------
|
|
F u n c t i o n s
|
|
----------------------------------------------------------------------*/
|
|
/**
|
|
* @name preserve_outline_tree
|
|
*
|
|
* Copy the list of outlines.
|
|
*/
|
|
void preserve_outline(EDGEPT *start) {
|
|
EDGEPT *srcpt;
|
|
|
|
if (start == NULL)
|
|
return;
|
|
srcpt = start;
|
|
do {
|
|
srcpt->flags[1] = 1;
|
|
srcpt = srcpt->next;
|
|
}
|
|
while (srcpt != start);
|
|
srcpt->flags[1] = 2;
|
|
}
|
|
|
|
|
|
/**************************************************************************/
|
|
void preserve_outline_tree(TESSLINE *srcline) {
|
|
TESSLINE *outline;
|
|
|
|
for (outline = srcline; outline != NULL; outline = outline->next) {
|
|
preserve_outline (outline->loop);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @name restore_outline_tree
|
|
*
|
|
* Copy the list of outlines.
|
|
*/
|
|
EDGEPT *restore_outline(EDGEPT *start) {
|
|
EDGEPT *srcpt;
|
|
EDGEPT *real_start;
|
|
|
|
if (start == NULL)
|
|
return NULL;
|
|
srcpt = start;
|
|
do {
|
|
if (srcpt->flags[1] == 2)
|
|
break;
|
|
srcpt = srcpt->next;
|
|
}
|
|
while (srcpt != start);
|
|
real_start = srcpt;
|
|
do {
|
|
srcpt = srcpt->next;
|
|
if (srcpt->prev->flags[1] == 0) {
|
|
remove_edgept(srcpt->prev);
|
|
}
|
|
}
|
|
while (srcpt != real_start);
|
|
return real_start;
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
void restore_outline_tree(TESSLINE *srcline) {
|
|
TESSLINE *outline;
|
|
|
|
for (outline = srcline; outline != NULL; outline = outline->next) {
|
|
outline->loop = restore_outline (outline->loop);
|
|
outline->start = outline->loop->pos;
|
|
}
|
|
}
|
|
|
|
// Helper runs all the checks on a seam to make sure it is valid.
|
|
// Returns the seam if OK, otherwise deletes the seam and returns NULL.
|
|
static SEAM* CheckSeam(int debug_level, inT32 blob_number, TWERD* word,
|
|
TBLOB* blob, TBLOB* other_blob,
|
|
const GenericVector<SEAM*>& seams, SEAM* seam) {
|
|
if (seam == NULL || blob->outlines == NULL || other_blob->outlines == NULL ||
|
|
total_containment(blob, other_blob) || check_blob(other_blob) ||
|
|
!seam->ContainedByBlob(*blob) || !seam->ContainedByBlob(*other_blob) ||
|
|
any_shared_split_points(seams, seam) ||
|
|
!seam->PrepareToInsertSeam(seams, word->blobs, blob_number, false)) {
|
|
word->blobs.remove(blob_number + 1);
|
|
if (seam) {
|
|
seam->UndoSeam(blob, other_blob);
|
|
delete seam;
|
|
seam = NULL;
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (debug_level) {
|
|
if (debug_level >2)
|
|
display_blob(blob, Red);
|
|
tprintf("\n** seam being removed ** \n");
|
|
}
|
|
#endif
|
|
} else {
|
|
delete other_blob;
|
|
}
|
|
return NULL;
|
|
}
|
|
return seam;
|
|
}
|
|
|
|
|
|
/**
|
|
* @name attempt_blob_chop
|
|
*
|
|
* Try to split the this blob after this one. Check to make sure that
|
|
* it was successful.
|
|
*/
|
|
namespace tesseract {
|
|
SEAM *Wordrec::attempt_blob_chop(TWERD *word, TBLOB *blob, inT32 blob_number,
|
|
bool italic_blob,
|
|
const GenericVector<SEAM*>& seams) {
|
|
if (repair_unchopped_blobs)
|
|
preserve_outline_tree (blob->outlines);
|
|
TBLOB *other_blob = TBLOB::ShallowCopy(*blob); /* Make new blob */
|
|
// Insert it into the word.
|
|
word->blobs.insert(other_blob, blob_number + 1);
|
|
|
|
SEAM *seam = NULL;
|
|
if (prioritize_division) {
|
|
TPOINT location;
|
|
if (divisible_blob(blob, italic_blob, &location)) {
|
|
seam = new SEAM(0.0f, location);
|
|
}
|
|
}
|
|
if (seam == NULL)
|
|
seam = pick_good_seam(blob);
|
|
if (chop_debug) {
|
|
if (seam != NULL)
|
|
seam->Print("Good seam picked=");
|
|
else
|
|
tprintf("\n** no seam picked *** \n");
|
|
}
|
|
if (seam) {
|
|
seam->ApplySeam(italic_blob, blob, other_blob);
|
|
}
|
|
|
|
seam = CheckSeam(chop_debug, blob_number, word, blob, other_blob,
|
|
seams, seam);
|
|
if (seam == NULL) {
|
|
if (repair_unchopped_blobs)
|
|
restore_outline_tree(blob->outlines);
|
|
if (allow_blob_division && !prioritize_division) {
|
|
// If the blob can simply be divided into outlines, then do that.
|
|
TPOINT location;
|
|
if (divisible_blob(blob, italic_blob, &location)) {
|
|
other_blob = TBLOB::ShallowCopy(*blob); /* Make new blob */
|
|
word->blobs.insert(other_blob, blob_number + 1);
|
|
seam = new SEAM(0.0f, location);
|
|
seam->ApplySeam(italic_blob, blob, other_blob);
|
|
seam = CheckSeam(chop_debug, blob_number, word, blob, other_blob,
|
|
seams, seam);
|
|
}
|
|
}
|
|
}
|
|
if (seam != NULL) {
|
|
// Make sure this seam doesn't get chopped again.
|
|
seam->Finalize();
|
|
}
|
|
return seam;
|
|
}
|
|
|
|
|
|
SEAM *Wordrec::chop_numbered_blob(TWERD *word, inT32 blob_number,
|
|
bool italic_blob,
|
|
const GenericVector<SEAM*>& seams) {
|
|
return attempt_blob_chop(word, word->blobs[blob_number], blob_number,
|
|
italic_blob, seams);
|
|
}
|
|
|
|
|
|
SEAM *Wordrec::chop_overlapping_blob(const GenericVector<TBOX>& boxes,
|
|
bool italic_blob, WERD_RES *word_res,
|
|
int *blob_number) {
|
|
TWERD *word = word_res->chopped_word;
|
|
for (*blob_number = 0; *blob_number < word->NumBlobs(); ++*blob_number) {
|
|
TBLOB *blob = word->blobs[*blob_number];
|
|
TPOINT topleft, botright;
|
|
topleft.x = blob->bounding_box().left();
|
|
topleft.y = blob->bounding_box().top();
|
|
botright.x = blob->bounding_box().right();
|
|
botright.y = blob->bounding_box().bottom();
|
|
|
|
TPOINT original_topleft, original_botright;
|
|
word_res->denorm.DenormTransform(NULL, topleft, &original_topleft);
|
|
word_res->denorm.DenormTransform(NULL, botright, &original_botright);
|
|
|
|
TBOX original_box = TBOX(original_topleft.x, original_botright.y,
|
|
original_botright.x, original_topleft.y);
|
|
|
|
bool almost_equal_box = false;
|
|
int num_overlap = 0;
|
|
for (int i = 0; i < boxes.size(); i++) {
|
|
if (original_box.overlap_fraction(boxes[i]) > 0.125)
|
|
num_overlap++;
|
|
if (original_box.almost_equal(boxes[i], 3))
|
|
almost_equal_box = true;
|
|
}
|
|
|
|
TPOINT location;
|
|
if (divisible_blob(blob, italic_blob, &location) ||
|
|
(!almost_equal_box && num_overlap > 1)) {
|
|
SEAM *seam = attempt_blob_chop(word, blob, *blob_number,
|
|
italic_blob, word_res->seam_array);
|
|
if (seam != NULL)
|
|
return seam;
|
|
}
|
|
}
|
|
|
|
*blob_number = -1;
|
|
return NULL;
|
|
}
|
|
|
|
} // namespace tesseract
|
|
|
|
|
|
/**
|
|
* @name any_shared_split_points
|
|
*
|
|
* Return true if any of the splits share a point with this one.
|
|
*/
|
|
int any_shared_split_points(const GenericVector<SEAM*>& seams, SEAM *seam) {
|
|
int length;
|
|
int index;
|
|
|
|
length = seams.size();
|
|
for (index = 0; index < length; index++)
|
|
if (seam->SharesPosition(*seams[index])) return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
* @name check_blob
|
|
*
|
|
* @return true if blob has a non whole outline.
|
|
*/
|
|
int check_blob(TBLOB *blob) {
|
|
TESSLINE *outline;
|
|
EDGEPT *edgept;
|
|
|
|
for (outline = blob->outlines; outline != NULL; outline = outline->next) {
|
|
edgept = outline->loop;
|
|
do {
|
|
if (edgept == NULL)
|
|
break;
|
|
edgept = edgept->next;
|
|
}
|
|
while (edgept != outline->loop);
|
|
if (edgept == NULL)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
namespace tesseract {
|
|
/**
|
|
* @name improve_one_blob
|
|
*
|
|
* Finds the best place to chop, based on the worst blob, fixpt, or next to
|
|
* a fragment, according to the input. Returns the SEAM corresponding to the
|
|
* chop point, if any is found, and the index in the ratings_matrix of the
|
|
* chopped blob. Note that blob_choices is just a copy of the pointers in the
|
|
* leading diagonal of the ratings MATRIX.
|
|
* Although the blob is chopped, the returned SEAM is yet to be inserted into
|
|
* word->seam_array and the resulting blobs are unclassified, so this function
|
|
* can be used by ApplyBox as well as during recognition.
|
|
*/
|
|
SEAM* Wordrec::improve_one_blob(const GenericVector<BLOB_CHOICE*>& blob_choices,
|
|
DANGERR *fixpt,
|
|
bool split_next_to_fragment,
|
|
bool italic_blob,
|
|
WERD_RES* word,
|
|
int* blob_number) {
|
|
float rating_ceiling = MAX_FLOAT32;
|
|
SEAM *seam = NULL;
|
|
do {
|
|
*blob_number = select_blob_to_split_from_fixpt(fixpt);
|
|
if (chop_debug) tprintf("blob_number from fixpt = %d\n", *blob_number);
|
|
bool split_point_from_dict = (*blob_number != -1);
|
|
if (split_point_from_dict) {
|
|
fixpt->clear();
|
|
} else {
|
|
*blob_number = select_blob_to_split(blob_choices, rating_ceiling,
|
|
split_next_to_fragment);
|
|
}
|
|
if (chop_debug) tprintf("blob_number = %d\n", *blob_number);
|
|
if (*blob_number == -1)
|
|
return NULL;
|
|
|
|
// TODO(rays) it may eventually help to allow italic_blob to be true,
|
|
seam = chop_numbered_blob(word->chopped_word, *blob_number, italic_blob,
|
|
word->seam_array);
|
|
if (seam != NULL)
|
|
return seam; // Success!
|
|
if (blob_choices[*blob_number] == NULL)
|
|
return NULL;
|
|
if (!split_point_from_dict) {
|
|
// We chopped the worst rated blob, try something else next time.
|
|
rating_ceiling = blob_choices[*blob_number]->rating();
|
|
}
|
|
} while (true);
|
|
return seam;
|
|
}
|
|
|
|
/**
|
|
* @name chop_one_blob
|
|
*
|
|
* Start with the current one-blob word and its classification. Find
|
|
* the worst blobs and try to divide it up to improve the ratings.
|
|
* Used for testing chopper.
|
|
*/
|
|
SEAM* Wordrec::chop_one_blob(const GenericVector<TBOX>& boxes,
|
|
const GenericVector<BLOB_CHOICE*>& blob_choices,
|
|
WERD_RES* word_res,
|
|
int* blob_number) {
|
|
if (prioritize_division) {
|
|
return chop_overlapping_blob(boxes, true, word_res, blob_number);
|
|
} else {
|
|
return improve_one_blob(blob_choices, NULL, false, true, word_res,
|
|
blob_number);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @name chop_word_main
|
|
*
|
|
* Classify the blobs in this word and permute the results. Find the
|
|
* worst blob in the word and chop it up. Continue this process until
|
|
* a good answer has been found or all the blobs have been chopped up
|
|
* enough. The results are returned in the WERD_RES.
|
|
*/
|
|
void Wordrec::chop_word_main(WERD_RES *word) {
|
|
int num_blobs = word->chopped_word->NumBlobs();
|
|
if (word->ratings == NULL) {
|
|
word->ratings = new MATRIX(num_blobs, wordrec_max_join_chunks);
|
|
}
|
|
if (word->ratings->get(0, 0) == NULL) {
|
|
// Run initial classification.
|
|
for (int b = 0; b < num_blobs; ++b) {
|
|
BLOB_CHOICE_LIST* choices = classify_piece(word->seam_array, b, b,
|
|
"Initial:", word->chopped_word,
|
|
word->blamer_bundle);
|
|
word->ratings->put(b, b, choices);
|
|
}
|
|
} else {
|
|
// Blobs have been pre-classified. Set matrix cell for all blob choices
|
|
for (int col = 0; col < word->ratings->dimension(); ++col) {
|
|
for (int row = col; row < word->ratings->dimension() &&
|
|
row < col + word->ratings->bandwidth(); ++row) {
|
|
BLOB_CHOICE_LIST* choices = word->ratings->get(col, row);
|
|
if (choices != NULL) {
|
|
BLOB_CHOICE_IT bc_it(choices);
|
|
for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) {
|
|
bc_it.data()->set_matrix_cell(col, row);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Run Segmentation Search.
|
|
BestChoiceBundle best_choice_bundle(word->ratings->dimension());
|
|
SegSearch(word, &best_choice_bundle, word->blamer_bundle);
|
|
|
|
if (word->best_choice == NULL) {
|
|
// SegSearch found no valid paths, so just use the leading diagonal.
|
|
word->FakeWordFromRatings(TOP_CHOICE_PERM);
|
|
}
|
|
word->RebuildBestState();
|
|
// If we finished without a hyphen at the end of the word, let the next word
|
|
// be found in the dictionary.
|
|
if (word->word->flag(W_EOL) &&
|
|
!getDict().has_hyphen_end(*word->best_choice)) {
|
|
getDict().reset_hyphen_vars(true);
|
|
}
|
|
|
|
if (word->blamer_bundle != NULL && this->fill_lattice_ != NULL) {
|
|
CallFillLattice(*word->ratings, word->best_choices,
|
|
*word->uch_set, word->blamer_bundle);
|
|
}
|
|
if (wordrec_debug_level > 0) {
|
|
tprintf("Final Ratings Matrix:\n");
|
|
word->ratings->print(getDict().getUnicharset());
|
|
}
|
|
word->FilterWordChoices(getDict().stopper_debug_level);
|
|
}
|
|
|
|
/**
|
|
* @name improve_by_chopping
|
|
*
|
|
* Repeatedly chops the worst blob, classifying the new blobs fixing up all
|
|
* the data, and incrementally runs the segmentation search until a good word
|
|
* is found, or no more chops can be found.
|
|
*/
|
|
void Wordrec::improve_by_chopping(float rating_cert_scale,
|
|
WERD_RES* word,
|
|
BestChoiceBundle* best_choice_bundle,
|
|
BlamerBundle* blamer_bundle,
|
|
LMPainPoints* pain_points,
|
|
GenericVector<SegSearchPending>* pending) {
|
|
int blob_number;
|
|
do { // improvement loop.
|
|
// Make a simple vector of BLOB_CHOICEs to make it easy to pick which
|
|
// one to chop.
|
|
GenericVector<BLOB_CHOICE*> blob_choices;
|
|
int num_blobs = word->ratings->dimension();
|
|
for (int i = 0; i < num_blobs; ++i) {
|
|
BLOB_CHOICE_LIST* choices = word->ratings->get(i, i);
|
|
if (choices == NULL || choices->empty()) {
|
|
blob_choices.push_back(NULL);
|
|
} else {
|
|
BLOB_CHOICE_IT bc_it(choices);
|
|
blob_choices.push_back(bc_it.data());
|
|
}
|
|
}
|
|
SEAM* seam = improve_one_blob(blob_choices, &best_choice_bundle->fixpt,
|
|
false, false, word, &blob_number);
|
|
if (seam == NULL) break;
|
|
// A chop has been made. We have to correct all the data structures to
|
|
// take into account the extra bottom-level blob.
|
|
// Put the seam into the seam_array and correct everything else on the
|
|
// word: ratings matrix (including matrix location in the BLOB_CHOICES),
|
|
// states in WERD_CHOICEs, and blob widths.
|
|
word->InsertSeam(blob_number, seam);
|
|
// Insert a new entry in the beam array.
|
|
best_choice_bundle->beam.insert(new LanguageModelState, blob_number);
|
|
// Fixpts are outdated, but will get recalculated.
|
|
best_choice_bundle->fixpt.clear();
|
|
// Remap existing pain points.
|
|
pain_points->RemapForSplit(blob_number);
|
|
// Insert a new pending at the chop point.
|
|
pending->insert(SegSearchPending(), blob_number);
|
|
|
|
// Classify the two newly created blobs using ProcessSegSearchPainPoint,
|
|
// as that updates the pending correctly and adds new pain points.
|
|
MATRIX_COORD pain_point(blob_number, blob_number);
|
|
ProcessSegSearchPainPoint(0.0f, pain_point, "Chop1", pending, word,
|
|
pain_points, blamer_bundle);
|
|
pain_point.col = blob_number + 1;
|
|
pain_point.row = blob_number + 1;
|
|
ProcessSegSearchPainPoint(0.0f, pain_point, "Chop2", pending, word,
|
|
pain_points, blamer_bundle);
|
|
if (language_model_->language_model_ngram_on) {
|
|
// N-gram evaluation depends on the number of blobs in a chunk, so we
|
|
// have to re-evaluate everything in the word.
|
|
ResetNGramSearch(word, best_choice_bundle, pending);
|
|
blob_number = 0;
|
|
}
|
|
// Run language model incrementally. (Except with the n-gram model on.)
|
|
UpdateSegSearchNodes(rating_cert_scale, blob_number, pending,
|
|
word, pain_points, best_choice_bundle, blamer_bundle);
|
|
} while (!language_model_->AcceptableChoiceFound() &&
|
|
word->ratings->dimension() < kMaxNumChunks);
|
|
|
|
// If after running only the chopper best_choice is incorrect and no blame
|
|
// has been yet set, blame the classifier if best_choice is classifier's
|
|
// top choice and is a dictionary word (i.e. language model could not have
|
|
// helped). Otherwise blame the tradeoff between the classifier and
|
|
// the old language model (permuters).
|
|
if (word->blamer_bundle != NULL &&
|
|
word->blamer_bundle->incorrect_result_reason() == IRR_CORRECT &&
|
|
!word->blamer_bundle->ChoiceIsCorrect(word->best_choice)) {
|
|
bool valid_permuter = word->best_choice != NULL &&
|
|
Dict::valid_word_permuter(word->best_choice->permuter(), false);
|
|
word->blamer_bundle->BlameClassifierOrLangModel(word,
|
|
getDict().getUnicharset(),
|
|
valid_permuter,
|
|
wordrec_debug_blamer);
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* select_blob_to_split
|
|
*
|
|
* These are the results of the last classification. Find a likely
|
|
* place to apply splits. If none, return -1.
|
|
**********************************************************************/
|
|
int Wordrec::select_blob_to_split(
|
|
const GenericVector<BLOB_CHOICE*>& blob_choices,
|
|
float rating_ceiling, bool split_next_to_fragment) {
|
|
BLOB_CHOICE *blob_choice;
|
|
int x;
|
|
float worst = -MAX_FLOAT32;
|
|
int worst_index = -1;
|
|
float worst_near_fragment = -MAX_FLOAT32;
|
|
int worst_index_near_fragment = -1;
|
|
const CHAR_FRAGMENT **fragments = NULL;
|
|
|
|
if (chop_debug) {
|
|
if (rating_ceiling < MAX_FLOAT32)
|
|
tprintf("rating_ceiling = %8.4f\n", rating_ceiling);
|
|
else
|
|
tprintf("rating_ceiling = No Limit\n");
|
|
}
|
|
|
|
if (split_next_to_fragment && blob_choices.size() > 0) {
|
|
fragments = new const CHAR_FRAGMENT *[blob_choices.length()];
|
|
if (blob_choices[0] != NULL) {
|
|
fragments[0] = getDict().getUnicharset().get_fragment(
|
|
blob_choices[0]->unichar_id());
|
|
} else {
|
|
fragments[0] = NULL;
|
|
}
|
|
}
|
|
|
|
for (x = 0; x < blob_choices.size(); ++x) {
|
|
if (blob_choices[x] == NULL) {
|
|
if (fragments != NULL) {
|
|
delete[] fragments;
|
|
}
|
|
return x;
|
|
} else {
|
|
blob_choice = blob_choices[x];
|
|
// Populate fragments for the following position.
|
|
if (split_next_to_fragment && x+1 < blob_choices.size()) {
|
|
if (blob_choices[x + 1] != NULL) {
|
|
fragments[x + 1] = getDict().getUnicharset().get_fragment(
|
|
blob_choices[x + 1]->unichar_id());
|
|
} else {
|
|
fragments[x + 1] = NULL;
|
|
}
|
|
}
|
|
if (blob_choice->rating() < rating_ceiling &&
|
|
blob_choice->certainty() < tessedit_certainty_threshold) {
|
|
// Update worst and worst_index.
|
|
if (blob_choice->rating() > worst) {
|
|
worst_index = x;
|
|
worst = blob_choice->rating();
|
|
}
|
|
if (split_next_to_fragment) {
|
|
// Update worst_near_fragment and worst_index_near_fragment.
|
|
bool expand_following_fragment =
|
|
(x + 1 < blob_choices.size() &&
|
|
fragments[x+1] != NULL && !fragments[x+1]->is_beginning());
|
|
bool expand_preceding_fragment =
|
|
(x > 0 && fragments[x-1] != NULL && !fragments[x-1]->is_ending());
|
|
if ((expand_following_fragment || expand_preceding_fragment) &&
|
|
blob_choice->rating() > worst_near_fragment) {
|
|
worst_index_near_fragment = x;
|
|
worst_near_fragment = blob_choice->rating();
|
|
if (chop_debug) {
|
|
tprintf("worst_index_near_fragment=%d"
|
|
" expand_following_fragment=%d"
|
|
" expand_preceding_fragment=%d\n",
|
|
worst_index_near_fragment,
|
|
expand_following_fragment,
|
|
expand_preceding_fragment);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (fragments != NULL) {
|
|
delete[] fragments;
|
|
}
|
|
// TODO(daria): maybe a threshold of badness for
|
|
// worst_near_fragment would be useful.
|
|
return worst_index_near_fragment != -1 ?
|
|
worst_index_near_fragment : worst_index;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* select_blob_to_split_from_fixpt
|
|
*
|
|
* Given the fix point from a dictionary search, if there is a single
|
|
* dangerous blob that maps to multiple characters, return that blob
|
|
* index as a place we need to split. If none, return -1.
|
|
**********************************************************************/
|
|
int Wordrec::select_blob_to_split_from_fixpt(DANGERR *fixpt) {
|
|
if (!fixpt)
|
|
return -1;
|
|
for (int i = 0; i < fixpt->size(); i++) {
|
|
if ((*fixpt)[i].begin + 1 == (*fixpt)[i].end &&
|
|
(*fixpt)[i].dangerous &&
|
|
(*fixpt)[i].correct_is_ngram) {
|
|
return (*fixpt)[i].begin;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
} // namespace tesseract
|
|
|
|
|
|
/**********************************************************************
|
|
* total_containment
|
|
*
|
|
* Check to see if one of these outlines is totally contained within
|
|
* the bounding box of the other.
|
|
**********************************************************************/
|
|
inT16 total_containment(TBLOB *blob1, TBLOB *blob2) {
|
|
TBOX box1 = blob1->bounding_box();
|
|
TBOX box2 = blob2->bounding_box();
|
|
return box1.contains(box2) || box2.contains(box1);
|
|
}
|