tesseract/neural_networks/runtime/neuron.cpp
2016-11-18 15:53:11 -08:00

104 lines
3.1 KiB
C++

// Copyright 2008 Google Inc.
// All Rights Reserved.
// Author: ahmadab@google.com (Ahmad Abdulkader)
//
// neuron.cpp: The implementation of a class for an object
// that represents a single neuron in a neural network
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "neuron.h"
#include "input_file_buffer.h"
namespace tesseract {
// Instantiate all supported templates
template bool Neuron::ReadBinary(InputFileBuffer *input_buffer);
// default and only constructor
Neuron::Neuron() {
Init();
}
// virtual destructor
Neuron::~Neuron() {
}
// Initializer
void Neuron::Init() {
id_ = -1;
frwd_dirty_ = false;
fan_in_.clear();
fan_in_weights_.clear();
activation_ = 0.0f;
output_ = 0.0f;
bias_ = 0.0f;
node_type_ = Unknown;
}
// Computes the activation and output of the neuron if not fresh
// by pulling the outputs of all fan-in neurons
void Neuron::FeedForward() {
if (!frwd_dirty_ ) {
return;
}
// nothing to do for input nodes: just pass the input to the o/p
// otherwise, pull the output of all fan-in neurons
if (node_type_ != Input) {
int fan_in_cnt = fan_in_.size();
// sum out the activation
activation_ = -bias_;
for (int in = 0; in < fan_in_cnt; in++) {
if (fan_in_[in]->frwd_dirty_) {
fan_in_[in]->FeedForward();
}
activation_ += ((*(fan_in_weights_[in])) * fan_in_[in]->output_);
}
// sigmoid it
output_ = Sigmoid(activation_);
}
frwd_dirty_ = false;
}
// set the type of the neuron
void Neuron::set_node_type(NeuronTypes Type) {
node_type_ = Type;
}
// Adds new connections *to* this neuron *From*
// a target neuron using specfied params
// Note that what is actually copied in this function are pointers to the
// specified Neurons and weights and not the actualt values. This is by
// design to centralize the alloction of neurons and weights and so
// increase the locality of reference and improve cache-hits resulting
// in a faster net. This technique resulted in a 2X-10X speedup
// (depending on network size and processor)
void Neuron::AddFromConnection(Neuron *neurons,
float *wts_offset,
int from_cnt) {
for (int in = 0; in < from_cnt; in++) {
fan_in_.push_back(neurons + in);
fan_in_weights_.push_back(wts_offset + in);
}
}
// fast computation of sigmoid function using a lookup table
// defined in sigmoid_table.cpp
float Neuron::Sigmoid(float activation) {
if (activation <= -10.0f) {
return 0.0f;
} else if (activation >= 10.0f) {
return 1.0f;
} else {
return kSigmoidTable[static_cast<int>(100 * (activation + 10.0))];
}
}
}