tesseract/src/classify/cluster.h
Stefan Weil 98346c2cd4 Modernize and format code
The code was modernized using clang-tidy with "modernize-use-using".

The modified files were then formatted using clang-tidy with
"google-readability-braces-around-statements", then clang-format
was applied.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2019-04-03 21:02:23 +02:00

129 lines
5.3 KiB
C

/******************************************************************************
** Filename: cluster.h
** Purpose: Definition of feature space clustering routines
** Author: Dan Johnson
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*****************************************************************************/
#ifndef CLUSTER_H
#define CLUSTER_H
#include "kdtree.h"
#include "oldlist.h"
struct BUCKETS;
#define MINBUCKETS 5
#define MAXBUCKETS 39
/*----------------------------------------------------------------------
Types
----------------------------------------------------------------------*/
typedef struct sample {
bool Clustered : 1; // true if included in a higher cluster
bool Prototype : 1; // true if cluster represented by a proto
unsigned SampleCount : 30; // number of samples in this cluster
struct sample* Left; // ptr to left sub-cluster
struct sample* Right; // ptr to right sub-cluster
int32_t CharID; // identifier of char sample came from
float Mean[1]; // mean of cluster - SampleSize floats
} CLUSTER;
using SAMPLE = CLUSTER; // can refer to as either sample or cluster
typedef enum { spherical, elliptical, mixed, automatic } PROTOSTYLE;
typedef struct { // parameters to control clustering
PROTOSTYLE ProtoStyle; // specifies types of protos to be made
float MinSamples; // min # of samples per proto - % of total
float MaxIllegal; // max percentage of samples in a cluster which
// have more than 1 feature in that cluster
float Independence; // desired independence between dimensions
double Confidence; // desired confidence in prototypes created
int MagicSamples; // Ideal number of samples in a cluster.
} CLUSTERCONFIG;
typedef enum { normal, uniform, D_random, DISTRIBUTION_COUNT } DISTRIBUTION;
typedef union {
float Spherical;
float* Elliptical;
} FLOATUNION;
typedef struct {
bool Significant : 1; // true if prototype is significant
bool Merged : 1; // Merged after clustering so do not output
// but kept for display purposes. If it has no
// samples then it was actually merged.
// Otherwise it matched an already significant
// cluster.
unsigned Style : 2; // spherical, elliptical, or mixed
unsigned NumSamples : 28; // number of samples in the cluster
CLUSTER* Cluster; // ptr to cluster which made prototype
DISTRIBUTION* Distrib; // different distribution for each dimension
float* Mean; // prototype mean
float TotalMagnitude; // total magnitude over all dimensions
float LogMagnitude; // log base e of TotalMagnitude
FLOATUNION Variance; // prototype variance
FLOATUNION Magnitude; // magnitude of density function
FLOATUNION Weight; // weight of density function
} PROTOTYPE;
typedef struct {
int16_t SampleSize; // number of parameters per sample
PARAM_DESC* ParamDesc; // description of each parameter
int32_t NumberOfSamples; // total number of samples being clustered
KDTREE* KDTree; // for optimal nearest neighbor searching
CLUSTER* Root; // ptr to root cluster of cluster tree
LIST ProtoList; // list of prototypes
int32_t NumChar; // # of characters represented by samples
// cache of reusable histograms by distribution type and number of buckets.
BUCKETS* bucket_cache[DISTRIBUTION_COUNT][MAXBUCKETS + 1 - MINBUCKETS];
} CLUSTERER;
typedef struct {
int32_t NumSamples; // number of samples in list
int32_t MaxNumSamples; // maximum size of list
SAMPLE* Sample[1]; // array of ptrs to sample data structures
} SAMPLELIST;
// low level cluster tree analysis routines.
#define InitSampleSearch(S, C) \
(((C) == nullptr) ? (S = NIL_LIST) : (S = push(NIL_LIST, (C))))
/*--------------------------------------------------------------------------
Public Function Prototypes
--------------------------------------------------------------------------*/
CLUSTERER* MakeClusterer(int16_t SampleSize, const PARAM_DESC ParamDesc[]);
SAMPLE* MakeSample(CLUSTERER* Clusterer, const float* Feature, int32_t CharID);
LIST ClusterSamples(CLUSTERER* Clusterer, CLUSTERCONFIG* Config);
void FreeClusterer(CLUSTERER* Clusterer);
void FreeProtoList(LIST* ProtoList);
void FreePrototype(void* arg); // PROTOTYPE *Prototype);
CLUSTER* NextSample(LIST* SearchState);
float Mean(PROTOTYPE* Proto, uint16_t Dimension);
float StandardDeviation(PROTOTYPE* Proto, uint16_t Dimension);
int32_t MergeClusters(int16_t N, PARAM_DESC ParamDesc[], int32_t n1, int32_t n2,
float m[], float m1[], float m2[]);
#endif