mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-06 09:17:49 +08:00
131 lines
5.7 KiB
C++
131 lines
5.7 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: ctc.h
|
|
// Description: Slightly improved standard CTC to compute the targets.
|
|
// Author: Ray Smith
|
|
// Created: Wed Jul 13 15:17:06 PDT 2016
|
|
//
|
|
// (C) Copyright 2016, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TESSERACT_LSTM_CTC_H_
|
|
#define TESSERACT_LSTM_CTC_H_
|
|
|
|
#include "genericvector.h"
|
|
#include "network.h"
|
|
#include "networkio.h"
|
|
#include "scrollview.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Class to encapsulate CTC and simple target generation.
|
|
class CTC {
|
|
public:
|
|
// Normalizes the probabilities such that no target has a prob below min_prob,
|
|
// and, provided that the initial total is at least min_total_prob, then all
|
|
// probs will sum to 1, otherwise to sum/min_total_prob. The maximum output
|
|
// probability is thus 1 - (num_classes-1)*min_prob.
|
|
static void NormalizeProbs(NetworkIO* probs) {
|
|
NormalizeProbs(probs->mutable_float_array());
|
|
}
|
|
|
|
// Builds a target using CTC. Slightly improved as follows:
|
|
// Includes normalizations and clipping for stability.
|
|
// labels should be pre-padded with nulls wherever desired, but they don't
|
|
// have to be between all labels. Allows for multi-label codes with no
|
|
// nulls between.
|
|
// labels can be longer than the time sequence, but the total number of
|
|
// essential labels (non-null plus nulls between equal labels) must not exceed
|
|
// the number of timesteps in outputs.
|
|
// outputs is the output of the network, and should have already been
|
|
// normalized with NormalizeProbs.
|
|
// On return targets is filled with the computed targets.
|
|
// Returns false if there is insufficient time for the labels.
|
|
static bool ComputeCTCTargets(const GenericVector<int>& truth_labels,
|
|
int null_char,
|
|
const GENERIC_2D_ARRAY<float>& outputs,
|
|
NetworkIO* targets);
|
|
|
|
private:
|
|
// Constructor is private as the instance only holds information specific to
|
|
// the current labels, outputs etc, and is built by the static function.
|
|
CTC(const GenericVector<int>& labels, int null_char,
|
|
const GENERIC_2D_ARRAY<float>& outputs);
|
|
|
|
// Computes vectors of min and max label index for each timestep, based on
|
|
// whether skippability of nulls makes it possible to complete a valid path.
|
|
bool ComputeLabelLimits();
|
|
// Computes targets based purely on the labels by spreading the labels evenly
|
|
// over the available timesteps.
|
|
void ComputeSimpleTargets(GENERIC_2D_ARRAY<float>* targets) const;
|
|
// Computes mean positions and half widths of the simple targets by spreading
|
|
// the labels even over the available timesteps.
|
|
void ComputeWidthsAndMeans(GenericVector<float>* half_widths,
|
|
GenericVector<int>* means) const;
|
|
// Calculates and returns a suitable fraction of the simple targets to add
|
|
// to the network outputs.
|
|
float CalculateBiasFraction();
|
|
// Runs the forward CTC pass, filling in log_probs.
|
|
void Forward(GENERIC_2D_ARRAY<double>* log_probs) const;
|
|
// Runs the backward CTC pass, filling in log_probs.
|
|
void Backward(GENERIC_2D_ARRAY<double>* log_probs) const;
|
|
// Normalizes and brings probs out of log space with a softmax over time.
|
|
void NormalizeSequence(GENERIC_2D_ARRAY<double>* probs) const;
|
|
// For each timestep computes the max prob for each class over all
|
|
// instances of the class in the labels_, and sets the targets to
|
|
// the max observed prob.
|
|
void LabelsToClasses(const GENERIC_2D_ARRAY<double>& probs,
|
|
NetworkIO* targets) const;
|
|
// Normalizes the probabilities such that no target has a prob below min_prob,
|
|
// and, provided that the initial total is at least min_total_prob, then all
|
|
// probs will sum to 1, otherwise to sum/min_total_prob. The maximum output
|
|
// probability is thus 1 - (num_classes-1)*min_prob.
|
|
static void NormalizeProbs(GENERIC_2D_ARRAY<float>* probs);
|
|
// Returns true if the label at index is a needed null.
|
|
bool NeededNull(int index) const;
|
|
// Returns exp(clipped(x)), clipping x to a reasonable range to prevent over/
|
|
// underflow.
|
|
static double ClippedExp(double x) {
|
|
if (x < -kMaxExpArg_) return exp(-kMaxExpArg_);
|
|
if (x > kMaxExpArg_) return exp(kMaxExpArg_);
|
|
return exp(x);
|
|
}
|
|
|
|
// Minimum probability limit for softmax input to ctc_loss.
|
|
static const float kMinProb_;
|
|
// Maximum absolute argument to exp().
|
|
static const double kMaxExpArg_;
|
|
// Minimum probability for total prob in time normalization.
|
|
static const double kMinTotalTimeProb_;
|
|
// Minimum probability for total prob in final normalization.
|
|
static const double kMinTotalFinalProb_;
|
|
|
|
// The truth label indices that are to be matched to outputs_.
|
|
const GenericVector<int>& labels_;
|
|
// The network outputs.
|
|
GENERIC_2D_ARRAY<float> outputs_;
|
|
// The null or "blank" label.
|
|
int null_char_;
|
|
// Number of timesteps in outputs_.
|
|
int num_timesteps_;
|
|
// Number of classes in outputs_.
|
|
int num_classes_;
|
|
// Number of labels in labels_.
|
|
int num_labels_;
|
|
// Min and max valid label indices for each timestep.
|
|
GenericVector<int> min_labels_;
|
|
GenericVector<int> max_labels_;
|
|
};
|
|
|
|
} // namespace tesseract
|
|
|
|
#endif // TESSERACT_LSTM_CTC_H_
|