mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-23 06:57:50 +08:00
524a61452d
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen closes #14 Commits:6317305
doxygen9f42f69
doxygen0fc4d52
doxygen37b4b55
fix typobded8f1
some more doxy020eb00
slight tweak524666d
doxygenify2a36a3e
doxygenify229d218
doxygenify7fd28ae
doxygenifya8c64bc
doxygenifyf5d21b6
fix5d8ede8
doxygenifya58a4e0
language_model.cppfa85709
lm_pain_points.cpp lm_state.cpp6418da3
merge06190ba
Merge branch 'old_doxygen_merge' into more-doxygen84acf08
Merge branch 'master' into more-doxygen50fe1ff
pagewalk.cpp cube_reco_context.cpp2982583
change to relative192a24a
applybox.cpp, take one8eeb053
delete docs for obsolete params52e4c77
modernise classify/ocrfeatures.cpp2a1cba6
modernise cutil/emalloc.cpp773e006
silence doxygen warningaeb1731
silence doxygen warningf18387f
silence doxygen; new params are unused?15ad6bd
doxygenify cutil/efio.cppc8b5dad
doxygenify cutil/danerror.cpp784450f
the globals and exceptions parts are obsolete; remove8bca324
doxygen classify/normfeat.cpp9bcbe16
doxygen classify/normmatch.cppaa9a971
doxygen ccmain/cube_control.cppc083ff2
doxygen ccmain/cube_reco_context.cppf842850
params changed5c94f12
doxygen ccmain/cubeclassifier.cpp15ba750
case sensitivef5c71d4
case sensitivef85655b
doxygen classify/intproto.cpp4bbc7aa
partial doxygen classify/mfx.cppdbb6041
partial doxygen classify/intproto.cpp2aa72db
finish doxygen classify/intproto.cpp0b8de99
doxygen training/mftraining.cpp0b5b35c
partial doxygen ccstruct/coutln.cppb81c766
partial doxygen ccstruct/coutln.cpp40fc415
finished? doxygen ccstruct/coutln.cpp6e4165c
doxygen classify/clusttool.cpp0267dec
doxygen classify/cutoffs.cpp7f0c70c
doxygen classify/fpoint.cpp512f3bd
ignore ~ files5668a52
doxygen classify/intmatcher.cpp84788d4
doxygen classify/kdtree.cpp29f36ca
doxygen classify/mfoutline.cpp40b94b1
silence doxygen warnings6c511b9
doxygen classify/mfx.cppf9b4080
doxygen classify/outfeat.cppaa1df05
doxygen classify/picofeat.cppcc5f466
doxygen training/cntraining.cppcce044f
doxygen training/commontraining.cpp167e216
missing param9498383
renamed params37eeac2
renamed paramd87b5dd
casec8ee174
renamed paramsb858db8
typo4c2a838
h2 context?81a2c0c
fix some param names; add some missing params, no docsbcf8a4c
add some missing params, no docsaf77f86
add some missing params, no docs; fix some param names01df24e
fix some params6161056
fix some params68508b6
fix some params285aeb6
doxygen complains here no matter what529bcfa
rm some missing params, typoscd21226
rm some missing params, add some new ones48a4bc2
fix paramsc844628
missing param312ce37
missing param; rename oneec2fdec
missing param05e15e0
missing paramsd515858
change "<" to < to make doxygen happyb476a28
wrong place
522 lines
20 KiB
C++
522 lines
20 KiB
C++
/******************************************************************************
|
|
** Filename: stopper.c
|
|
** Purpose: Stopping criteria for word classifier.
|
|
** Author: Dan Johnson
|
|
** History: Mon Apr 29 14:56:49 1991, DSJ, Created.
|
|
**
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "stopper.h"
|
|
#include "ambigs.h"
|
|
#include "ccutil.h"
|
|
#include "const.h"
|
|
#include "danerror.h"
|
|
#include "dict.h"
|
|
#include "efio.h"
|
|
#include "helpers.h"
|
|
#include "matchdefs.h"
|
|
#include "pageres.h"
|
|
#include "params.h"
|
|
#include "ratngs.h"
|
|
#include "scanutils.h"
|
|
#include "unichar.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4244) // Conversion warnings
|
|
#pragma warning(disable:4800) // int/bool warnings
|
|
#endif
|
|
|
|
using tesseract::ScriptPos;
|
|
/*----------------------------------------------------------------------------
|
|
Private Code
|
|
----------------------------------------------------------------------------*/
|
|
|
|
namespace tesseract {
|
|
|
|
bool Dict::AcceptableChoice(const WERD_CHOICE& best_choice,
|
|
XHeightConsistencyEnum xheight_consistency) {
|
|
float CertaintyThreshold = stopper_nondict_certainty_base;
|
|
int WordSize;
|
|
|
|
if (stopper_no_acceptable_choices) return false;
|
|
|
|
if (best_choice.length() == 0) return false;
|
|
|
|
bool no_dang_ambigs = !best_choice.dangerous_ambig_found();
|
|
bool is_valid_word = valid_word_permuter(best_choice.permuter(), false);
|
|
bool is_case_ok = case_ok(best_choice, getUnicharset());
|
|
|
|
if (stopper_debug_level >= 1) {
|
|
const char *xht = "UNKNOWN";
|
|
switch (xheight_consistency) {
|
|
case XH_GOOD: xht = "NORMAL"; break;
|
|
case XH_SUBNORMAL: xht = "SUBNORMAL"; break;
|
|
case XH_INCONSISTENT: xht = "INCONSISTENT"; break;
|
|
default: xht = "UNKNOWN";
|
|
}
|
|
tprintf("\nStopper: %s (word=%c, case=%c, xht_ok=%s=[%g,%g])\n",
|
|
best_choice.unichar_string().string(),
|
|
(is_valid_word ? 'y' : 'n'),
|
|
(is_case_ok ? 'y' : 'n'),
|
|
xht,
|
|
best_choice.min_x_height(),
|
|
best_choice.max_x_height());
|
|
}
|
|
// Do not accept invalid words in PASS1.
|
|
if (reject_offset_ <= 0.0f && !is_valid_word) return false;
|
|
if (is_valid_word && is_case_ok) {
|
|
WordSize = LengthOfShortestAlphaRun(best_choice);
|
|
WordSize -= stopper_smallword_size;
|
|
if (WordSize < 0)
|
|
WordSize = 0;
|
|
CertaintyThreshold += WordSize * stopper_certainty_per_char;
|
|
}
|
|
|
|
if (stopper_debug_level >= 1)
|
|
tprintf("Stopper: Rating = %4.1f, Certainty = %4.1f, Threshold = %4.1f\n",
|
|
best_choice.rating(), best_choice.certainty(), CertaintyThreshold);
|
|
|
|
if (no_dang_ambigs &&
|
|
best_choice.certainty() > CertaintyThreshold &&
|
|
xheight_consistency < XH_INCONSISTENT &&
|
|
UniformCertainties(best_choice)) {
|
|
return true;
|
|
} else {
|
|
if (stopper_debug_level >= 1) {
|
|
tprintf("AcceptableChoice() returned false"
|
|
" (no_dang_ambig:%d cert:%.4g thresh:%g uniform:%d)\n",
|
|
no_dang_ambigs, best_choice.certainty(),
|
|
CertaintyThreshold,
|
|
UniformCertainties(best_choice));
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Dict::AcceptableResult(WERD_RES* word) {
|
|
if (word->best_choice == NULL) return false;
|
|
float CertaintyThreshold = stopper_nondict_certainty_base - reject_offset_;
|
|
int WordSize;
|
|
|
|
if (stopper_debug_level >= 1) {
|
|
tprintf("\nRejecter: %s (word=%c, case=%c, unambig=%c, multiple=%c)\n",
|
|
word->best_choice->debug_string().string(),
|
|
(valid_word(*word->best_choice) ? 'y' : 'n'),
|
|
(case_ok(*word->best_choice, getUnicharset()) ? 'y' : 'n'),
|
|
word->best_choice->dangerous_ambig_found() ? 'n' : 'y',
|
|
word->best_choices.singleton() ? 'n' : 'y');
|
|
}
|
|
|
|
if (word->best_choice->length() == 0 || !word->best_choices.singleton())
|
|
return false;
|
|
if (valid_word(*word->best_choice) &&
|
|
case_ok(*word->best_choice, getUnicharset())) {
|
|
WordSize = LengthOfShortestAlphaRun(*word->best_choice);
|
|
WordSize -= stopper_smallword_size;
|
|
if (WordSize < 0)
|
|
WordSize = 0;
|
|
CertaintyThreshold += WordSize * stopper_certainty_per_char;
|
|
}
|
|
|
|
if (stopper_debug_level >= 1)
|
|
tprintf("Rejecter: Certainty = %4.1f, Threshold = %4.1f ",
|
|
word->best_choice->certainty(), CertaintyThreshold);
|
|
|
|
if (word->best_choice->certainty() > CertaintyThreshold &&
|
|
!stopper_no_acceptable_choices) {
|
|
if (stopper_debug_level >= 1)
|
|
tprintf("ACCEPTED\n");
|
|
return true;
|
|
} else {
|
|
if (stopper_debug_level >= 1)
|
|
tprintf("REJECTED\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Dict::NoDangerousAmbig(WERD_CHOICE *best_choice,
|
|
DANGERR *fixpt,
|
|
bool fix_replaceable,
|
|
MATRIX *ratings) {
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("\nRunning NoDangerousAmbig() for %s\n",
|
|
best_choice->debug_string().string());
|
|
}
|
|
|
|
// Construct BLOB_CHOICE_LIST_VECTOR with ambiguities
|
|
// for each unichar id in BestChoice.
|
|
BLOB_CHOICE_LIST_VECTOR ambig_blob_choices;
|
|
int i;
|
|
bool ambigs_found = false;
|
|
// For each position in best_choice:
|
|
// -- choose AMBIG_SPEC_LIST that corresponds to unichar_id at best_choice[i]
|
|
// -- initialize wrong_ngram with a single unichar_id at best_choice[i]
|
|
// -- look for ambiguities corresponding to wrong_ngram in the list while
|
|
// adding the following unichar_ids from best_choice to wrong_ngram
|
|
//
|
|
// Repeat the above procedure twice: first time look through
|
|
// ambigs to be replaced and replace all the ambiguities found;
|
|
// second time look through dangerous ambiguities and construct
|
|
// ambig_blob_choices with fake a blob choice for each ambiguity
|
|
// and pass them to dawg_permute_and_select() to search for
|
|
// ambiguous words in the dictionaries.
|
|
//
|
|
// Note that during the execution of the for loop (on the first pass)
|
|
// if replacements are made the length of best_choice might change.
|
|
for (int pass = 0; pass < (fix_replaceable ? 2 : 1); ++pass) {
|
|
bool replace = (fix_replaceable && pass == 0);
|
|
const UnicharAmbigsVector &table = replace ?
|
|
getUnicharAmbigs().replace_ambigs() : getUnicharAmbigs().dang_ambigs();
|
|
if (!replace) {
|
|
// Initialize ambig_blob_choices with lists containing a single
|
|
// unichar id for the correspoding position in best_choice.
|
|
// best_choice consisting from only the original letters will
|
|
// have a rating of 0.0.
|
|
for (i = 0; i < best_choice->length(); ++i) {
|
|
BLOB_CHOICE_LIST *lst = new BLOB_CHOICE_LIST();
|
|
BLOB_CHOICE_IT lst_it(lst);
|
|
// TODO(rays/antonova) Put real xheights and y shifts here.
|
|
lst_it.add_to_end(new BLOB_CHOICE(best_choice->unichar_id(i),
|
|
0.0, 0.0, -1, 0, 1, 0, BCC_AMBIG));
|
|
ambig_blob_choices.push_back(lst);
|
|
}
|
|
}
|
|
UNICHAR_ID wrong_ngram[MAX_AMBIG_SIZE + 1];
|
|
int wrong_ngram_index;
|
|
int next_index;
|
|
int blob_index = 0;
|
|
for (i = 0; i < best_choice->length(); blob_index += best_choice->state(i),
|
|
++i) {
|
|
UNICHAR_ID curr_unichar_id = best_choice->unichar_id(i);
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("Looking for %s ngrams starting with %s:\n",
|
|
replace ? "replaceable" : "ambiguous",
|
|
getUnicharset().debug_str(curr_unichar_id).string());
|
|
}
|
|
int num_wrong_blobs = best_choice->state(i);
|
|
wrong_ngram_index = 0;
|
|
wrong_ngram[wrong_ngram_index] = curr_unichar_id;
|
|
if (curr_unichar_id == INVALID_UNICHAR_ID ||
|
|
curr_unichar_id >= table.size() ||
|
|
table[curr_unichar_id] == NULL) {
|
|
continue; // there is no ambig spec for this unichar id
|
|
}
|
|
AmbigSpec_IT spec_it(table[curr_unichar_id]);
|
|
for (spec_it.mark_cycle_pt(); !spec_it.cycled_list();) {
|
|
const AmbigSpec *ambig_spec = spec_it.data();
|
|
wrong_ngram[wrong_ngram_index+1] = INVALID_UNICHAR_ID;
|
|
int compare = UnicharIdArrayUtils::compare(wrong_ngram,
|
|
ambig_spec->wrong_ngram);
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("candidate ngram: ");
|
|
UnicharIdArrayUtils::print(wrong_ngram, getUnicharset());
|
|
tprintf("current ngram from spec: ");
|
|
UnicharIdArrayUtils::print(ambig_spec->wrong_ngram, getUnicharset());
|
|
tprintf("comparison result: %d\n", compare);
|
|
}
|
|
if (compare == 0) {
|
|
// Record the place where we found an ambiguity.
|
|
if (fixpt != NULL) {
|
|
UNICHAR_ID leftmost_id = ambig_spec->correct_fragments[0];
|
|
fixpt->push_back(DANGERR_INFO(
|
|
blob_index, blob_index + num_wrong_blobs, replace,
|
|
getUnicharset().get_isngram(ambig_spec->correct_ngram_id),
|
|
leftmost_id));
|
|
if (stopper_debug_level > 1) {
|
|
tprintf("fixpt+=(%d %d %d %d %s)\n", blob_index,
|
|
blob_index + num_wrong_blobs, false,
|
|
getUnicharset().get_isngram(
|
|
ambig_spec->correct_ngram_id),
|
|
getUnicharset().id_to_unichar(leftmost_id));
|
|
}
|
|
}
|
|
|
|
if (replace) {
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("replace ambiguity with %s : ",
|
|
getUnicharset().id_to_unichar(
|
|
ambig_spec->correct_ngram_id));
|
|
UnicharIdArrayUtils::print(
|
|
ambig_spec->correct_fragments, getUnicharset());
|
|
}
|
|
ReplaceAmbig(i, ambig_spec->wrong_ngram_size,
|
|
ambig_spec->correct_ngram_id,
|
|
best_choice, ratings);
|
|
} else if (i > 0 || ambig_spec->type != CASE_AMBIG) {
|
|
// We found dang ambig - update ambig_blob_choices.
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("found ambiguity: ");
|
|
UnicharIdArrayUtils::print(
|
|
ambig_spec->correct_fragments, getUnicharset());
|
|
}
|
|
ambigs_found = true;
|
|
for (int tmp_index = 0; tmp_index <= wrong_ngram_index;
|
|
++tmp_index) {
|
|
// Add a blob choice for the corresponding fragment of the
|
|
// ambiguity. These fake blob choices are initialized with
|
|
// negative ratings (which are not possible for real blob
|
|
// choices), so that dawg_permute_and_select() considers any
|
|
// word not consisting of only the original letters a better
|
|
// choice and stops searching for alternatives once such a
|
|
// choice is found.
|
|
BLOB_CHOICE_IT bc_it(ambig_blob_choices[i+tmp_index]);
|
|
bc_it.add_to_end(new BLOB_CHOICE(
|
|
ambig_spec->correct_fragments[tmp_index], -1.0, 0.0,
|
|
-1, 0, 1, 0, BCC_AMBIG));
|
|
}
|
|
}
|
|
spec_it.forward();
|
|
} else if (compare == -1) {
|
|
if (wrong_ngram_index+1 < ambig_spec->wrong_ngram_size &&
|
|
((next_index = wrong_ngram_index+1+i) < best_choice->length())) {
|
|
// Add the next unichar id to wrong_ngram and keep looking for
|
|
// more ambigs starting with curr_unichar_id in AMBIG_SPEC_LIST.
|
|
wrong_ngram[++wrong_ngram_index] =
|
|
best_choice->unichar_id(next_index);
|
|
num_wrong_blobs += best_choice->state(next_index);
|
|
} else {
|
|
break; // no more matching ambigs in this AMBIG_SPEC_LIST
|
|
}
|
|
} else {
|
|
spec_it.forward();
|
|
}
|
|
} // end searching AmbigSpec_LIST
|
|
} // end searching best_choice
|
|
} // end searching replace and dangerous ambigs
|
|
|
|
// If any ambiguities were found permute the constructed ambig_blob_choices
|
|
// to see if an alternative dictionary word can be found.
|
|
if (ambigs_found) {
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("\nResulting ambig_blob_choices:\n");
|
|
for (i = 0; i < ambig_blob_choices.length(); ++i) {
|
|
print_ratings_list("", ambig_blob_choices.get(i), getUnicharset());
|
|
tprintf("\n");
|
|
}
|
|
}
|
|
WERD_CHOICE *alt_word = dawg_permute_and_select(ambig_blob_choices, 0.0);
|
|
ambigs_found = (alt_word->rating() < 0.0);
|
|
if (ambigs_found) {
|
|
if (stopper_debug_level >= 1) {
|
|
tprintf ("Stopper: Possible ambiguous word = %s\n",
|
|
alt_word->debug_string().string());
|
|
}
|
|
if (fixpt != NULL) {
|
|
// Note: Currently character choices combined from fragments can only
|
|
// be generated by NoDangrousAmbigs(). This code should be updated if
|
|
// the capability to produce classifications combined from character
|
|
// fragments is added to other functions.
|
|
int orig_i = 0;
|
|
for (i = 0; i < alt_word->length(); ++i) {
|
|
const UNICHARSET &uchset = getUnicharset();
|
|
bool replacement_is_ngram =
|
|
uchset.get_isngram(alt_word->unichar_id(i));
|
|
UNICHAR_ID leftmost_id = alt_word->unichar_id(i);
|
|
if (replacement_is_ngram) {
|
|
// we have to extract the leftmost unichar from the ngram.
|
|
const char *str = uchset.id_to_unichar(leftmost_id);
|
|
int step = uchset.step(str);
|
|
if (step) leftmost_id = uchset.unichar_to_id(str, step);
|
|
}
|
|
int end_i = orig_i + alt_word->state(i);
|
|
if (alt_word->state(i) > 1 ||
|
|
(orig_i + 1 == end_i && replacement_is_ngram)) {
|
|
// Compute proper blob indices.
|
|
int blob_start = 0;
|
|
for (int j = 0; j < orig_i; ++j)
|
|
blob_start += best_choice->state(j);
|
|
int blob_end = blob_start;
|
|
for (int j = orig_i; j < end_i; ++j)
|
|
blob_end += best_choice->state(j);
|
|
fixpt->push_back(DANGERR_INFO(blob_start, blob_end, true,
|
|
replacement_is_ngram, leftmost_id));
|
|
if (stopper_debug_level > 1) {
|
|
tprintf("fixpt->dangerous+=(%d %d %d %d %s)\n", orig_i, end_i,
|
|
true, replacement_is_ngram,
|
|
uchset.id_to_unichar(leftmost_id));
|
|
}
|
|
}
|
|
orig_i += alt_word->state(i);
|
|
}
|
|
}
|
|
}
|
|
delete alt_word;
|
|
}
|
|
if (output_ambig_words_file_ != NULL) {
|
|
fprintf(output_ambig_words_file_, "\n");
|
|
}
|
|
|
|
ambig_blob_choices.delete_data_pointers();
|
|
return !ambigs_found;
|
|
}
|
|
|
|
void Dict::EndDangerousAmbigs() {}
|
|
|
|
void Dict::SettupStopperPass1() {
|
|
reject_offset_ = 0.0;
|
|
}
|
|
|
|
void Dict::SettupStopperPass2() {
|
|
reject_offset_ = stopper_phase2_certainty_rejection_offset;
|
|
}
|
|
|
|
void Dict::ReplaceAmbig(int wrong_ngram_begin_index, int wrong_ngram_size,
|
|
UNICHAR_ID correct_ngram_id, WERD_CHOICE *werd_choice,
|
|
MATRIX *ratings) {
|
|
int num_blobs_to_replace = 0;
|
|
int begin_blob_index = 0;
|
|
int i;
|
|
// Rating and certainty for the new BLOB_CHOICE are derived from the
|
|
// replaced choices.
|
|
float new_rating = 0.0f;
|
|
float new_certainty = 0.0f;
|
|
BLOB_CHOICE* old_choice = NULL;
|
|
for (i = 0; i < wrong_ngram_begin_index + wrong_ngram_size; ++i) {
|
|
if (i >= wrong_ngram_begin_index) {
|
|
int num_blobs = werd_choice->state(i);
|
|
int col = begin_blob_index + num_blobs_to_replace;
|
|
int row = col + num_blobs - 1;
|
|
BLOB_CHOICE_LIST* choices = ratings->get(col, row);
|
|
ASSERT_HOST(choices != NULL);
|
|
old_choice = FindMatchingChoice(werd_choice->unichar_id(i), choices);
|
|
ASSERT_HOST(old_choice != NULL);
|
|
new_rating += old_choice->rating();
|
|
new_certainty += old_choice->certainty();
|
|
num_blobs_to_replace += num_blobs;
|
|
} else {
|
|
begin_blob_index += werd_choice->state(i);
|
|
}
|
|
}
|
|
new_certainty /= wrong_ngram_size;
|
|
// If there is no entry in the ratings matrix, add it.
|
|
MATRIX_COORD coord(begin_blob_index,
|
|
begin_blob_index + num_blobs_to_replace - 1);
|
|
if (!coord.Valid(*ratings)) {
|
|
ratings->IncreaseBandSize(coord.row - coord.col + 1);
|
|
}
|
|
if (ratings->get(coord.col, coord.row) == NULL)
|
|
ratings->put(coord.col, coord.row, new BLOB_CHOICE_LIST);
|
|
BLOB_CHOICE_LIST* new_choices = ratings->get(coord.col, coord.row);
|
|
BLOB_CHOICE* choice = FindMatchingChoice(correct_ngram_id, new_choices);
|
|
if (choice != NULL) {
|
|
// Already there. Upgrade if new rating better.
|
|
if (new_rating < choice->rating())
|
|
choice->set_rating(new_rating);
|
|
if (new_certainty < choice->certainty())
|
|
choice->set_certainty(new_certainty);
|
|
// DO NOT SORT!! It will mess up the iterator in LanguageModel::UpdateState.
|
|
} else {
|
|
// Need a new choice with the correct_ngram_id.
|
|
choice = new BLOB_CHOICE(*old_choice);
|
|
choice->set_unichar_id(correct_ngram_id);
|
|
choice->set_rating(new_rating);
|
|
choice->set_certainty(new_certainty);
|
|
choice->set_classifier(BCC_AMBIG);
|
|
choice->set_matrix_cell(coord.col, coord.row);
|
|
BLOB_CHOICE_IT it (new_choices);
|
|
it.add_to_end(choice);
|
|
}
|
|
// Remove current unichar from werd_choice. On the last iteration
|
|
// set the correct replacement unichar instead of removing a unichar.
|
|
for (int replaced_count = 0; replaced_count < wrong_ngram_size;
|
|
++replaced_count) {
|
|
if (replaced_count + 1 == wrong_ngram_size) {
|
|
werd_choice->set_blob_choice(wrong_ngram_begin_index,
|
|
num_blobs_to_replace, choice);
|
|
} else {
|
|
werd_choice->remove_unichar_id(wrong_ngram_begin_index + 1);
|
|
}
|
|
}
|
|
if (stopper_debug_level >= 1) {
|
|
werd_choice->print("ReplaceAmbig() ");
|
|
tprintf("Modified blob_choices: ");
|
|
print_ratings_list("\n", new_choices, getUnicharset());
|
|
}
|
|
}
|
|
|
|
int Dict::LengthOfShortestAlphaRun(const WERD_CHOICE &WordChoice) {
|
|
int shortest = MAX_INT32;
|
|
int curr_len = 0;
|
|
for (int w = 0; w < WordChoice.length(); ++w) {
|
|
if (getUnicharset().get_isalpha(WordChoice.unichar_id(w))) {
|
|
curr_len++;
|
|
} else if (curr_len > 0) {
|
|
if (curr_len < shortest) shortest = curr_len;
|
|
curr_len = 0;
|
|
}
|
|
}
|
|
if (curr_len > 0 && curr_len < shortest) {
|
|
shortest = curr_len;
|
|
} else if (shortest == MAX_INT32) {
|
|
shortest = 0;
|
|
}
|
|
return shortest;
|
|
}
|
|
|
|
int Dict::UniformCertainties(const WERD_CHOICE& word) {
|
|
float Certainty;
|
|
float WorstCertainty = MAX_FLOAT32;
|
|
float CertaintyThreshold;
|
|
FLOAT64 TotalCertainty;
|
|
FLOAT64 TotalCertaintySquared;
|
|
FLOAT64 Variance;
|
|
FLOAT32 Mean, StdDev;
|
|
int word_length = word.length();
|
|
|
|
if (word_length < 3)
|
|
return true;
|
|
|
|
TotalCertainty = TotalCertaintySquared = 0.0;
|
|
for (int i = 0; i < word_length; ++i) {
|
|
Certainty = word.certainty(i);
|
|
TotalCertainty += Certainty;
|
|
TotalCertaintySquared += Certainty * Certainty;
|
|
if (Certainty < WorstCertainty)
|
|
WorstCertainty = Certainty;
|
|
}
|
|
|
|
// Subtract off worst certainty from statistics.
|
|
word_length--;
|
|
TotalCertainty -= WorstCertainty;
|
|
TotalCertaintySquared -= WorstCertainty * WorstCertainty;
|
|
|
|
Mean = TotalCertainty / word_length;
|
|
Variance = ((word_length * TotalCertaintySquared -
|
|
TotalCertainty * TotalCertainty) /
|
|
(word_length * (word_length - 1)));
|
|
if (Variance < 0.0)
|
|
Variance = 0.0;
|
|
StdDev = sqrt(Variance);
|
|
|
|
CertaintyThreshold = Mean - stopper_allowable_character_badness * StdDev;
|
|
if (CertaintyThreshold > stopper_nondict_certainty_base)
|
|
CertaintyThreshold = stopper_nondict_certainty_base;
|
|
|
|
if (word.certainty() < CertaintyThreshold) {
|
|
if (stopper_debug_level >= 1)
|
|
tprintf("Stopper: Non-uniform certainty = %4.1f"
|
|
" (m=%4.1f, s=%4.1f, t=%4.1f)\n",
|
|
word.certainty(), Mean, StdDev, CertaintyThreshold);
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
} // namespace tesseract
|