tesseract/ccutil/genericvector.h
Stefan Weil bb2348bbbe genericvector: Fix and optimize function LoadDataFromFile
It's not necessary to initialize the vector with 0,
because the initial values are read from file.

Fix also an assertion when trying to read an empty file.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2017-05-12 14:15:54 +02:00

1110 lines
36 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: genericvector.h
// Description: Generic vector class
// Author: Daria Antonova
// Created: Mon Jun 23 11:26:43 PDT 2008
//
// (C) Copyright 2007, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
//
#ifndef TESSERACT_CCUTIL_GENERICVECTOR_H_
#define TESSERACT_CCUTIL_GENERICVECTOR_H_
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "tesscallback.h"
#include "errcode.h"
#include "helpers.h"
#include "ndminx.h"
#include "serialis.h"
#include "strngs.h"
// Use PointerVector<T> below in preference to GenericVector<T*>, as that
// provides automatic deletion of pointers, [De]Serialize that works, and
// sort that works.
template <typename T>
class GenericVector {
public:
GenericVector() : size_used_(0), size_reserved_(0), data_(NULL),
clear_cb_(NULL), compare_cb_(NULL) {}
GenericVector(int size, T init_val) {
init(size);
init_to_size(size, init_val);
}
// Copy
GenericVector(const GenericVector& other) {
this->init(other.size());
this->operator+=(other);
}
GenericVector<T> &operator+=(const GenericVector& other);
GenericVector<T> &operator=(const GenericVector& other);
~GenericVector();
// Reserve some memory.
void reserve(int size);
// Double the size of the internal array.
void double_the_size();
// Resizes to size and sets all values to t.
void init_to_size(int size, T t);
// Resizes to size without any initialization.
void resize_no_init(int size) {
reserve(size);
size_used_ = size;
}
// Return the size used.
int size() const {
return size_used_;
}
// Workaround to avoid g++ -Wsign-compare warnings.
unsigned int unsigned_size() const {
static_assert(sizeof(size_used_) <= sizeof(unsigned int), "");
assert(0 <= size_used_);
return static_cast<unsigned int>(size_used_);
}
int size_reserved() const {
return size_reserved_;
}
int length() const {
return size_used_;
}
// Return true if empty.
bool empty() const {
return size_used_ == 0;
}
// Return the object from an index.
T &get(int index) const;
T &back() const;
T &operator[](int index) const;
// Returns the last object and removes it.
T pop_back();
// Return the index of the T object.
// This method NEEDS a compare_callback to be passed to
// set_compare_callback.
int get_index(T object) const;
// Return true if T is in the array
bool contains(T object) const;
// Return true if the index is valid
T contains_index(int index) const;
// Push an element in the end of the array
int push_back(T object);
void operator+=(T t);
// Push an element in the end of the array if the same
// element is not already contained in the array.
int push_back_new(T object);
// Push an element in the front of the array
// Note: This function is O(n)
int push_front(T object);
// Set the value at the given index
void set(T t, int index);
// Insert t at the given index, push other elements to the right.
void insert(T t, int index);
// Removes an element at the given index and
// shifts the remaining elements to the left.
void remove(int index);
// Truncates the array to the given size by removing the end.
// If the current size is less, the array is not expanded.
void truncate(int size) {
if (size < size_used_)
size_used_ = size;
}
// Add a callback to be called to delete the elements when the array took
// their ownership.
void set_clear_callback(TessCallback1<T>* cb);
// Add a callback to be called to compare the elements when needed (contains,
// get_id, ...)
void set_compare_callback(TessResultCallback2<bool, T const &, T const &>* cb);
// Clear the array, calling the clear callback function if any.
// All the owned callbacks are also deleted.
// If you don't want the callbacks to be deleted, before calling clear, set
// the callback to NULL.
void clear();
// Delete objects pointed to by data_[i]
void delete_data_pointers();
// This method clears the current object, then, does a shallow copy of
// its argument, and finally invalidates its argument.
// Callbacks are moved to the current object;
void move(GenericVector<T>* from);
// Read/Write the array to a file. This does _NOT_ read/write the callbacks.
// The callback given must be permanent since they will be called more than
// once. The given callback will be deleted at the end.
// If the callbacks are NULL, then the data is simply read/written using
// fread (and swapping)/fwrite.
// Returns false on error or if the callback returns false.
// DEPRECATED. Use [De]Serialize[Classes] instead.
bool write(FILE* f, TessResultCallback2<bool, FILE*, T const &>* cb) const;
bool read(tesseract::TFile* f,
TessResultCallback2<bool, tesseract::TFile*, T*>* cb);
// Writes a vector of simple types to the given file. Assumes that bitwise
// read/write of T will work. Returns false in case of error.
// TODO(rays) Change all callers to use TFile and remove deprecated methods.
bool Serialize(FILE* fp) const;
bool Serialize(tesseract::TFile* fp) const;
// Reads a vector of simple types from the given file. Assumes that bitwise
// read/write will work with ReverseN according to sizeof(T).
// Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
// TFile is assumed to know about swapping.
bool DeSerialize(bool swap, FILE* fp);
bool DeSerialize(tesseract::TFile* fp);
// Skips the deserialization of the vector.
static bool SkipDeSerialize(tesseract::TFile* fp);
// Writes a vector of classes to the given file. Assumes the existence of
// bool T::Serialize(FILE* fp) const that returns false in case of error.
// Returns false in case of error.
bool SerializeClasses(FILE* fp) const;
bool SerializeClasses(tesseract::TFile* fp) const;
// Reads a vector of classes from the given file. Assumes the existence of
// bool T::Deserialize(bool swap, FILE* fp) that returns false in case of
// error. Also needs T::T() and T::T(constT&), as init_to_size is used in
// this function. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool DeSerializeClasses(bool swap, FILE* fp);
bool DeSerializeClasses(tesseract::TFile* fp);
// Calls SkipDeSerialize on the elements of the vector.
static bool SkipDeSerializeClasses(tesseract::TFile* fp);
// Allocates a new array of double the current_size, copies over the
// information from data to the new location, deletes data and returns
// the pointed to the new larger array.
// This function uses memcpy to copy the data, instead of invoking
// operator=() for each element like double_the_size() does.
static T *double_the_size_memcpy(int current_size, T *data) {
T *data_new = new T[current_size * 2];
memcpy(data_new, data, sizeof(T) * current_size);
delete[] data;
return data_new;
}
// Reverses the elements of the vector.
void reverse() {
for (int i = 0; i < size_used_ / 2; ++i)
Swap(&data_[i], &data_[size_used_ - 1 - i]);
}
// Sorts the members of this vector using the less than comparator (cmp_lt),
// which compares the values. Useful for GenericVectors to primitive types.
// Will not work so great for pointers (unless you just want to sort some
// pointers). You need to provide a specialization to sort_cmp to use
// your type.
void sort();
// Sort the array into the order defined by the qsort function comparator.
// The comparator function is as defined by qsort, ie. it receives pointers
// to two Ts and returns negative if the first element is to appear earlier
// in the result and positive if it is to appear later, with 0 for equal.
void sort(int (*comparator)(const void*, const void*)) {
qsort(data_, size_used_, sizeof(*data_), comparator);
}
// Searches the array (assuming sorted in ascending order, using sort()) for
// an element equal to target and returns true if it is present.
// Use binary_search to get the index of target, or its nearest candidate.
bool bool_binary_search(const T& target) const {
int index = binary_search(target);
if (index >= size_used_)
return false;
return data_[index] == target;
}
// Searches the array (assuming sorted in ascending order, using sort()) for
// an element equal to target and returns the index of the best candidate.
// The return value is conceptually the largest index i such that
// data_[i] <= target or 0 if target < the whole vector.
// NOTE that this function uses operator> so really the return value is
// the largest index i such that data_[i] > target is false.
int binary_search(const T& target) const {
int bottom = 0;
int top = size_used_;
while (top - bottom > 1) {
int middle = (bottom + top) / 2;
if (data_[middle] > target)
top = middle;
else
bottom = middle;
}
return bottom;
}
// Compact the vector by deleting elements using operator!= on basic types.
// The vector must be sorted.
void compact_sorted() {
if (size_used_ == 0)
return;
// First element is in no matter what, hence the i = 1.
int last_write = 0;
for (int i = 1; i < size_used_; ++i) {
// Finds next unique item and writes it.
if (data_[last_write] != data_[i])
data_[++last_write] = data_[i];
}
// last_write is the index of a valid data cell, so add 1.
size_used_ = last_write + 1;
}
// Compact the vector by deleting elements for which delete_cb returns
// true. delete_cb is a permanent callback and will be deleted.
void compact(TessResultCallback1<bool, int>* delete_cb) {
int new_size = 0;
int old_index = 0;
// Until the callback returns true, the elements stay the same.
while (old_index < size_used_ && !delete_cb->Run(old_index++))
++new_size;
// Now just copy anything else that gets false from delete_cb.
for (; old_index < size_used_; ++old_index) {
if (!delete_cb->Run(old_index)) {
data_[new_size++] = data_[old_index];
}
}
size_used_ = new_size;
delete delete_cb;
}
T dot_product(const GenericVector<T>& other) const {
T result = static_cast<T>(0);
for (int i = MIN(size_used_, other.size_used_) - 1; i >= 0; --i)
result += data_[i] * other.data_[i];
return result;
}
// Returns the index of what would be the target_index_th item in the array
// if the members were sorted, without actually sorting. Members are
// shuffled around, but it takes O(n) time.
// NOTE: uses operator< and operator== on the members.
int choose_nth_item(int target_index) {
// Make sure target_index is legal.
if (target_index < 0)
target_index = 0; // ensure legal
else if (target_index >= size_used_)
target_index = size_used_ - 1;
unsigned int seed = 1;
return choose_nth_item(target_index, 0, size_used_, &seed);
}
// Swaps the elements with the given indices.
void swap(int index1, int index2) {
if (index1 != index2) {
T tmp = data_[index1];
data_[index1] = data_[index2];
data_[index2] = tmp;
}
}
// Returns true if all elements of *this are within the given range.
// Only uses operator<
bool WithinBounds(const T& rangemin, const T& rangemax) const {
for (int i = 0; i < size_used_; ++i) {
if (data_[i] < rangemin || rangemax < data_[i])
return false;
}
return true;
}
protected:
// Internal recursive version of choose_nth_item.
int choose_nth_item(int target_index, int start, int end, unsigned int* seed);
// Init the object, allocating size memory.
void init(int size);
// We are assuming that the object generally placed in thie
// vector are small enough that for efficiency it makes sense
// to start with a larger initial size.
static const int kDefaultVectorSize = 4;
inT32 size_used_;
inT32 size_reserved_;
T* data_;
TessCallback1<T>* clear_cb_;
// Mutable because Run method is not const
mutable TessResultCallback2<bool, T const &, T const &>* compare_cb_;
};
namespace tesseract {
// Function to read a GenericVector<char> from a whole file.
// Returns false on failure.
typedef bool (*FileReader)(const STRING& filename, GenericVector<char>* data);
// Function to write a GenericVector<char> to a whole file.
// Returns false on failure.
typedef bool (*FileWriter)(const GenericVector<char>& data,
const STRING& filename);
// The default FileReader loads the whole file into the vector of char,
// returning false on error.
inline bool LoadDataFromFile(const STRING& filename,
GenericVector<char>* data) {
bool result = false;
FILE* fp = fopen(filename.string(), "rb");
if (fp != NULL) {
fseek(fp, 0, SEEK_END);
size_t size = ftell(fp);
fseek(fp, 0, SEEK_SET);
if (size > 0) {
data->resize_no_init(size);
result = fread(&(*data)[0], 1, size, fp) == size;
}
fclose(fp);
}
return result;
}
// The default FileWriter writes the vector of char to the filename file,
// returning false on error.
inline bool SaveDataToFile(const GenericVector<char>& data,
const STRING& filename) {
FILE* fp = fopen(filename.string(), "wb");
if (fp == NULL) return false;
bool result =
static_cast<int>(fwrite(&data[0], 1, data.size(), fp)) == data.size();
fclose(fp);
return result;
}
// Reads a file as a vector of STRING.
inline bool LoadFileLinesToStrings(const STRING& filename,
GenericVector<STRING>* lines) {
GenericVector<char> data;
if (!LoadDataFromFile(filename.string(), &data)) {
return false;
}
STRING lines_str(&data[0], data.size());
lines_str.split('\n', lines);
return true;
}
template <typename T>
bool cmp_eq(T const & t1, T const & t2) {
return t1 == t2;
}
// Used by sort()
// return < 0 if t1 < t2
// return 0 if t1 == t2
// return > 0 if t1 > t2
template <typename T>
int sort_cmp(const void* t1, const void* t2) {
const T* a = static_cast<const T *> (t1);
const T* b = static_cast<const T *> (t2);
if (*a < *b) {
return -1;
} else if (*b < *a) {
return 1;
} else {
return 0;
}
}
// Used by PointerVector::sort()
// return < 0 if t1 < t2
// return 0 if t1 == t2
// return > 0 if t1 > t2
template <typename T>
int sort_ptr_cmp(const void* t1, const void* t2) {
const T* a = *static_cast<T * const *>(t1);
const T* b = *static_cast<T * const *>(t2);
if (*a < *b) {
return -1;
} else if (*b < *a) {
return 1;
} else {
return 0;
}
}
// Subclass for a vector of pointers. Use in preference to GenericVector<T*>
// as it provides automatic deletion and correct serialization, with the
// corollary that all copy operations are deep copies of the pointed-to objects.
template<typename T>
class PointerVector : public GenericVector<T*> {
public:
PointerVector() : GenericVector<T*>() { }
explicit PointerVector(int size) : GenericVector<T*>(size) { }
~PointerVector() {
// Clear must be called here, even though it is called again by the base,
// as the base will call the wrong clear.
clear();
}
// Copy must be deep, as the pointers will be automatically deleted on
// destruction.
PointerVector(const PointerVector& other) : GenericVector<T*>(other) {
this->init(other.size());
this->operator+=(other);
}
PointerVector<T>& operator+=(const PointerVector& other) {
this->reserve(this->size_used_ + other.size_used_);
for (int i = 0; i < other.size(); ++i) {
this->push_back(new T(*other.data_[i]));
}
return *this;
}
PointerVector<T>& operator=(const PointerVector& other) {
if (&other != this) {
this->truncate(0);
this->operator+=(other);
}
return *this;
}
// Removes an element at the given index and
// shifts the remaining elements to the left.
void remove(int index) {
delete GenericVector<T*>::data_[index];
GenericVector<T*>::remove(index);
}
// Truncates the array to the given size by removing the end.
// If the current size is less, the array is not expanded.
void truncate(int size) {
for (int i = size; i < GenericVector<T*>::size_used_; ++i)
delete GenericVector<T*>::data_[i];
GenericVector<T*>::truncate(size);
}
// Compact the vector by deleting elements for which delete_cb returns
// true. delete_cb is a permanent callback and will be deleted.
void compact(TessResultCallback1<bool, const T*>* delete_cb) {
int new_size = 0;
int old_index = 0;
// Until the callback returns true, the elements stay the same.
while (old_index < GenericVector<T*>::size_used_ &&
!delete_cb->Run(GenericVector<T*>::data_[old_index++]))
++new_size;
// Now just copy anything else that gets false from delete_cb.
for (; old_index < GenericVector<T*>::size_used_; ++old_index) {
if (!delete_cb->Run(GenericVector<T*>::data_[old_index])) {
GenericVector<T*>::data_[new_size++] =
GenericVector<T*>::data_[old_index];
} else {
delete GenericVector<T*>::data_[old_index];
}
}
GenericVector<T*>::size_used_ = new_size;
delete delete_cb;
}
// Clear the array, calling the clear callback function if any.
// All the owned callbacks are also deleted.
// If you don't want the callbacks to be deleted, before calling clear, set
// the callback to NULL.
void clear() {
GenericVector<T*>::delete_data_pointers();
GenericVector<T*>::clear();
}
// Writes a vector of (pointers to) classes to the given file. Assumes the
// existence of bool T::Serialize(FILE*) const that returns false in case of
// error. There is no Serialize for simple types, as you would have a
// normal GenericVector of those.
// Returns false in case of error.
bool Serialize(FILE* fp) const {
inT32 used = GenericVector<T*>::size_used_;
if (fwrite(&used, sizeof(used), 1, fp) != 1) return false;
for (int i = 0; i < used; ++i) {
inT8 non_null = GenericVector<T*>::data_[i] != NULL;
if (fwrite(&non_null, sizeof(non_null), 1, fp) != 1) return false;
if (non_null && !GenericVector<T*>::data_[i]->Serialize(fp)) return false;
}
return true;
}
bool Serialize(TFile* fp) const {
inT32 used = GenericVector<T*>::size_used_;
if (fp->FWrite(&used, sizeof(used), 1) != 1) return false;
for (int i = 0; i < used; ++i) {
inT8 non_null = GenericVector<T*>::data_[i] != NULL;
if (fp->FWrite(&non_null, sizeof(non_null), 1) != 1) return false;
if (non_null && !GenericVector<T*>::data_[i]->Serialize(fp)) return false;
}
return true;
}
// Reads a vector of (pointers to) classes to the given file. Assumes the
// existence of bool T::DeSerialize(bool, Tfile*) const that returns false in
// case of error. There is no Serialize for simple types, as you would have a
// normal GenericVector of those.
// If swap is true, assumes a big/little-endian swap is needed.
// Also needs T::T(), as new T is used in this function.
// Returns false in case of error.
bool DeSerialize(bool swap, FILE* fp) {
inT32 reserved;
if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
if (swap) Reverse32(&reserved);
GenericVector<T*>::reserve(reserved);
truncate(0);
for (int i = 0; i < reserved; ++i) {
inT8 non_null;
if (fread(&non_null, sizeof(non_null), 1, fp) != 1) return false;
T* item = NULL;
if (non_null) {
item = new T;
if (!item->DeSerialize(swap, fp)) {
delete item;
return false;
}
this->push_back(item);
} else {
// Null elements should keep their place in the vector.
this->push_back(NULL);
}
}
return true;
}
bool DeSerialize(TFile* fp) {
inT32 reserved;
if (!DeSerializeSize(fp, &reserved)) return false;
GenericVector<T*>::reserve(reserved);
truncate(0);
for (int i = 0; i < reserved; ++i) {
if (!DeSerializeElement(fp)) return false;
}
return true;
}
// Enables deserialization of a selection of elements. Note that in order to
// retain the integrity of the stream, the caller must call some combination
// of DeSerializeElement and DeSerializeSkip of the exact number returned in
// *size, assuming a true return.
static bool DeSerializeSize(TFile* fp, inT32* size) {
return fp->FReadEndian(size, sizeof(*size), 1) == 1;
}
// Reads and appends to the vector the next element of the serialization.
bool DeSerializeElement(TFile* fp) {
inT8 non_null;
if (fp->FRead(&non_null, sizeof(non_null), 1) != 1) return false;
T* item = NULL;
if (non_null) {
item = new T;
if (!item->DeSerialize(fp)) {
delete item;
return false;
}
this->push_back(item);
} else {
// Null elements should keep their place in the vector.
this->push_back(NULL);
}
return true;
}
// Skips the next element of the serialization.
static bool DeSerializeSkip(TFile* fp) {
inT8 non_null;
if (fp->FRead(&non_null, sizeof(non_null), 1) != 1) return false;
if (non_null) {
if (!T::SkipDeSerialize(fp)) return false;
}
return true;
}
// Sorts the items pointed to by the members of this vector using
// t::operator<().
void sort() { this->GenericVector<T*>::sort(&sort_ptr_cmp<T>); }
};
} // namespace tesseract
// A useful vector that uses operator== to do comparisons.
template <typename T>
class GenericVectorEqEq : public GenericVector<T> {
public:
GenericVectorEqEq() {
GenericVector<T>::set_compare_callback(
NewPermanentTessCallback(tesseract::cmp_eq<T>));
}
GenericVectorEqEq(int size) : GenericVector<T>(size) {
GenericVector<T>::set_compare_callback(
NewPermanentTessCallback(tesseract::cmp_eq<T>));
}
};
template <typename T>
void GenericVector<T>::init(int size) {
size_used_ = 0;
size_reserved_ = 0;
data_ = 0;
clear_cb_ = 0;
compare_cb_ = 0;
reserve(size);
}
template <typename T>
GenericVector<T>::~GenericVector() {
clear();
}
// Reserve some memory. If the internal array contains elements, they are
// copied.
template <typename T>
void GenericVector<T>::reserve(int size) {
if (size_reserved_ >= size || size <= 0)
return;
if (size < kDefaultVectorSize) size = kDefaultVectorSize;
T* new_array = new T[size];
for (int i = 0; i < size_used_; ++i)
new_array[i] = data_[i];
if (data_ != NULL) delete[] data_;
data_ = new_array;
size_reserved_ = size;
}
template <typename T>
void GenericVector<T>::double_the_size() {
if (size_reserved_ == 0) {
reserve(kDefaultVectorSize);
}
else {
reserve(2 * size_reserved_);
}
}
// Resizes to size and sets all values to t.
template <typename T>
void GenericVector<T>::init_to_size(int size, T t) {
reserve(size);
size_used_ = size;
for (int i = 0; i < size; ++i)
data_[i] = t;
}
// Return the object from an index.
template <typename T>
T &GenericVector<T>::get(int index) const {
ASSERT_HOST(index >= 0 && index < size_used_);
return data_[index];
}
template <typename T>
T &GenericVector<T>::operator[](int index) const {
assert(index >= 0 && index < size_used_);
return data_[index];
}
template <typename T>
T &GenericVector<T>::back() const {
ASSERT_HOST(size_used_ > 0);
return data_[size_used_ - 1];
}
// Returns the last object and removes it.
template <typename T>
T GenericVector<T>::pop_back() {
ASSERT_HOST(size_used_ > 0);
return data_[--size_used_];
}
// Return the object from an index.
template <typename T>
void GenericVector<T>::set(T t, int index) {
ASSERT_HOST(index >= 0 && index < size_used_);
data_[index] = t;
}
// Shifts the rest of the elements to the right to make
// space for the new elements and inserts the given element
// at the specified index.
template <typename T>
void GenericVector<T>::insert(T t, int index) {
ASSERT_HOST(index >= 0 && index <= size_used_);
if (size_reserved_ == size_used_)
double_the_size();
for (int i = size_used_; i > index; --i) {
data_[i] = data_[i-1];
}
data_[index] = t;
size_used_++;
}
// Removes an element at the given index and
// shifts the remaining elements to the left.
template <typename T>
void GenericVector<T>::remove(int index) {
ASSERT_HOST(index >= 0 && index < size_used_);
for (int i = index; i < size_used_ - 1; ++i) {
data_[i] = data_[i+1];
}
size_used_--;
}
// Return true if the index is valindex
template <typename T>
T GenericVector<T>::contains_index(int index) const {
return index >= 0 && index < size_used_;
}
// Return the index of the T object.
template <typename T>
int GenericVector<T>::get_index(T object) const {
for (int i = 0; i < size_used_; ++i) {
ASSERT_HOST(compare_cb_ != NULL);
if (compare_cb_->Run(object, data_[i]))
return i;
}
return -1;
}
// Return true if T is in the array
template <typename T>
bool GenericVector<T>::contains(T object) const {
return get_index(object) != -1;
}
// Add an element in the array
template <typename T>
int GenericVector<T>::push_back(T object) {
int index = 0;
if (size_used_ == size_reserved_)
double_the_size();
index = size_used_++;
data_[index] = object;
return index;
}
template <typename T>
int GenericVector<T>::push_back_new(T object) {
int index = get_index(object);
if (index >= 0)
return index;
return push_back(object);
}
// Add an element in the array (front)
template <typename T>
int GenericVector<T>::push_front(T object) {
if (size_used_ == size_reserved_)
double_the_size();
for (int i = size_used_; i > 0; --i)
data_[i] = data_[i-1];
data_[0] = object;
++size_used_;
return 0;
}
template <typename T>
void GenericVector<T>::operator+=(T t) {
push_back(t);
}
template <typename T>
GenericVector<T> &GenericVector<T>::operator+=(const GenericVector& other) {
this->reserve(size_used_ + other.size_used_);
for (int i = 0; i < other.size(); ++i) {
this->operator+=(other.data_[i]);
}
return *this;
}
template <typename T>
GenericVector<T> &GenericVector<T>::operator=(const GenericVector& other) {
if (&other != this) {
this->truncate(0);
this->operator+=(other);
}
return *this;
}
// Add a callback to be called to delete the elements when the array took
// their ownership.
template <typename T>
void GenericVector<T>::set_clear_callback(TessCallback1<T>* cb) {
clear_cb_ = cb;
}
// Add a callback to be called to delete the elements when the array took
// their ownership.
template <typename T>
void GenericVector<T>::set_compare_callback(
TessResultCallback2<bool, T const &, T const &>* cb) {
compare_cb_ = cb;
}
// Clear the array, calling the callback function if any.
template <typename T>
void GenericVector<T>::clear() {
if (size_reserved_ > 0) {
if (clear_cb_ != NULL)
for (int i = 0; i < size_used_; ++i)
clear_cb_->Run(data_[i]);
delete[] data_;
data_ = NULL;
size_used_ = 0;
size_reserved_ = 0;
}
if (clear_cb_ != NULL) {
delete clear_cb_;
clear_cb_ = NULL;
}
if (compare_cb_ != NULL) {
delete compare_cb_;
compare_cb_ = NULL;
}
}
template <typename T>
void GenericVector<T>::delete_data_pointers() {
for (int i = 0; i < size_used_; ++i)
if (data_[i]) {
delete data_[i];
}
}
template <typename T>
bool GenericVector<T>::write(
FILE* f, TessResultCallback2<bool, FILE*, T const &>* cb) const {
if (fwrite(&size_reserved_, sizeof(size_reserved_), 1, f) != 1) return false;
if (fwrite(&size_used_, sizeof(size_used_), 1, f) != 1) return false;
if (cb != NULL) {
for (int i = 0; i < size_used_; ++i) {
if (!cb->Run(f, data_[i])) {
delete cb;
return false;
}
}
delete cb;
} else {
if (fwrite(data_, sizeof(T), size_used_, f) != unsigned_size()) return false;
}
return true;
}
template <typename T>
bool GenericVector<T>::read(
tesseract::TFile* f, TessResultCallback2<bool, tesseract::TFile*, T*>* cb) {
inT32 reserved;
if (f->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
reserve(reserved);
if (f->FReadEndian(&size_used_, sizeof(size_used_), 1) != 1) return false;
if (cb != NULL) {
for (int i = 0; i < size_used_; ++i) {
if (!cb->Run(f, data_ + i)) {
delete cb;
return false;
}
}
delete cb;
} else {
if (f->FReadEndian(data_, sizeof(T), size_used_) != size_used_)
return false;
}
return true;
}
// Writes a vector of simple types to the given file. Assumes that bitwise
// read/write of T will work. Returns false in case of error.
template <typename T>
bool GenericVector<T>::Serialize(FILE* fp) const {
if (fwrite(&size_used_, sizeof(size_used_), 1, fp) != 1) return false;
if (fwrite(data_, sizeof(*data_), size_used_, fp) != unsigned_size()) return false;
return true;
}
template <typename T>
bool GenericVector<T>::Serialize(tesseract::TFile* fp) const {
if (fp->FWrite(&size_used_, sizeof(size_used_), 1) != 1) return false;
if (fp->FWrite(data_, sizeof(*data_), size_used_) != size_used_) return false;
return true;
}
// Reads a vector of simple types from the given file. Assumes that bitwise
// read/write will work with ReverseN according to sizeof(T).
// Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
template <typename T>
bool GenericVector<T>::DeSerialize(bool swap, FILE* fp) {
inT32 reserved;
if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
if (swap) Reverse32(&reserved);
reserve(reserved);
size_used_ = reserved;
if (fread(data_, sizeof(T), size_used_, fp) != unsigned_size()) return false;
if (swap) {
for (int i = 0; i < size_used_; ++i)
ReverseN(&data_[i], sizeof(data_[i]));
}
return true;
}
template <typename T>
bool GenericVector<T>::DeSerialize(tesseract::TFile* fp) {
inT32 reserved;
if (fp->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
reserve(reserved);
size_used_ = reserved;
return fp->FReadEndian(data_, sizeof(T), size_used_) == size_used_;
}
template <typename T>
bool GenericVector<T>::SkipDeSerialize(tesseract::TFile* fp) {
inT32 reserved;
if (fp->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
return fp->FRead(NULL, sizeof(T), reserved) == reserved;
}
// Writes a vector of classes to the given file. Assumes the existence of
// bool T::Serialize(FILE* fp) const that returns false in case of error.
// Returns false in case of error.
template <typename T>
bool GenericVector<T>::SerializeClasses(FILE* fp) const {
if (fwrite(&size_used_, sizeof(size_used_), 1, fp) != 1) return false;
for (int i = 0; i < size_used_; ++i) {
if (!data_[i].Serialize(fp)) return false;
}
return true;
}
template <typename T>
bool GenericVector<T>::SerializeClasses(tesseract::TFile* fp) const {
if (fp->FWrite(&size_used_, sizeof(size_used_), 1) != 1) return false;
for (int i = 0; i < size_used_; ++i) {
if (!data_[i].Serialize(fp)) return false;
}
return true;
}
// Reads a vector of classes from the given file. Assumes the existence of
// bool T::Deserialize(bool swap, FILE* fp) that returns false in case of
// error. Also needs T::T() and T::T(constT&), as init_to_size is used in
// this function. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
template <typename T>
bool GenericVector<T>::DeSerializeClasses(bool swap, FILE* fp) {
inT32 reserved;
if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
if (swap) Reverse32(&reserved);
T empty;
init_to_size(reserved, empty);
for (int i = 0; i < reserved; ++i) {
if (!data_[i].DeSerialize(swap, fp)) return false;
}
return true;
}
template <typename T>
bool GenericVector<T>::DeSerializeClasses(tesseract::TFile* fp) {
inT32 reserved;
if (fp->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
T empty;
init_to_size(reserved, empty);
for (int i = 0; i < reserved; ++i) {
if (!data_[i].DeSerialize(fp)) return false;
}
return true;
}
template <typename T>
bool GenericVector<T>::SkipDeSerializeClasses(tesseract::TFile* fp) {
inT32 reserved;
if (fp->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
for (int i = 0; i < reserved; ++i) {
if (!T::SkipDeSerialize(fp)) return false;
}
return true;
}
// This method clear the current object, then, does a shallow copy of
// its argument, and finally invalidates its argument.
template <typename T>
void GenericVector<T>::move(GenericVector<T>* from) {
this->clear();
this->data_ = from->data_;
this->size_reserved_ = from->size_reserved_;
this->size_used_ = from->size_used_;
this->compare_cb_ = from->compare_cb_;
this->clear_cb_ = from->clear_cb_;
from->data_ = NULL;
from->clear_cb_ = NULL;
from->compare_cb_ = NULL;
from->size_used_ = 0;
from->size_reserved_ = 0;
}
template <typename T>
void GenericVector<T>::sort() {
sort(&tesseract::sort_cmp<T>);
}
// Internal recursive version of choose_nth_item.
// The algorithm used comes from "Algorithms" by Sedgewick:
// http://books.google.com/books/about/Algorithms.html?id=idUdqdDXqnAC
// The principle is to choose a random pivot, and move everything less than
// the pivot to its left, and everything greater than the pivot to the end
// of the array, then recurse on the part that contains the desired index, or
// just return the answer if it is in the equal section in the middle.
// The random pivot guarantees average linear time for the same reason that
// n times vector::push_back takes linear time on average.
// target_index, start and and end are all indices into the full array.
// Seed is a seed for rand_r for thread safety purposes. Its value is
// unimportant as the random numbers do not affect the result except
// between equal answers.
template <typename T>
int GenericVector<T>::choose_nth_item(int target_index, int start, int end,
unsigned int* seed) {
// Number of elements to process.
int num_elements = end - start;
// Trivial cases.
if (num_elements <= 1)
return start;
if (num_elements == 2) {
if (data_[start] < data_[start + 1]) {
return target_index > start ? start + 1 : start;
} else {
return target_index > start ? start : start + 1;
}
}
// Place the pivot at start.
#ifndef rand_r // _MSC_VER, ANDROID
srand(*seed);
#define rand_r(seed) rand()
#endif // _MSC_VER
int pivot = rand_r(seed) % num_elements + start;
swap(pivot, start);
// The invariant condition here is that items [start, next_lesser) are less
// than the pivot (which is at index next_lesser) and items
// [prev_greater, end) are greater than the pivot, with items
// [next_lesser, prev_greater) being equal to the pivot.
int next_lesser = start;
int prev_greater = end;
for (int next_sample = start + 1; next_sample < prev_greater;) {
if (data_[next_sample] < data_[next_lesser]) {
swap(next_lesser++, next_sample++);
} else if (data_[next_sample] == data_[next_lesser]) {
++next_sample;
} else {
swap(--prev_greater, next_sample);
}
}
// Now the invariant is set up, we recurse on just the section that contains
// the desired index.
if (target_index < next_lesser)
return choose_nth_item(target_index, start, next_lesser, seed);
else if (target_index < prev_greater)
return next_lesser; // In equal bracket.
else
return choose_nth_item(target_index, prev_greater, end, seed);
}
#endif // TESSERACT_CCUTIL_GENERICVECTOR_H_