tesseract/training/validator.cpp

206 lines
7.7 KiB
C++

#include "validator.h"
#include <algorithm>
#include <unordered_map>
#include <vector>
#include "icuerrorcode.h"
#include "unicode/uchar.h" // From libicu
#include "unicode/uscript.h" // From libicu
#include "validate_grapheme.h"
#include "validate_indic.h"
#include "validate_khmer.h"
#include "validate_myanmar.h"
namespace tesseract {
// Some specific but universally useful unicodes.
const char32 Validator::kZeroWidthSpace = 0x200B;
const char32 Validator::kZeroWidthNonJoiner = 0x200C;
const char32 Validator::kZeroWidthJoiner = 0x200D;
const char32 Validator::kLeftToRightMark = 0x200E;
const char32 Validator::kRightToLeftMark = 0x200F;
const char32 Validator::kInvalid = 0xfffd;
// Validates and cleans the src vector of unicodes to the *dest, according to
// g_mode. In the case of kSingleString, a single vector containing the whole
// result is added to *dest. With kCombined, multiple vectors are added to
// *dest with one grapheme in each. With kGlyphSplit, multiple vectors are
// added to *dest with a smaller unit representing a glyph in each.
// In case of validation error, returns false and as much as possible of the
// input, without discarding invalid text.
/* static */
bool Validator::ValidateCleanAndSegment(
GraphemeNormMode g_mode, bool report_errors, const std::vector<char32>& src,
std::vector<std::vector<char32>>* dest) {
ValidateGrapheme g_validator(ViramaScript::kNonVirama, report_errors);
std::vector<std::vector<char32>> graphemes;
ViramaScript script = MostFrequentViramaScript(src);
bool success = true;
if (script == ViramaScript::kNonVirama) {
// The grapheme segmenter's maximum segmentation is the grapheme unit, so
// up the mode by 1 to get the desired effect.
if (g_mode == GraphemeNormMode::kCombined)
g_mode = GraphemeNormMode::kGlyphSplit;
else if (g_mode == GraphemeNormMode::kGlyphSplit)
g_mode = GraphemeNormMode::kIndividualUnicodes;
// Just do grapheme segmentation.
success = g_validator.ValidateCleanAndSegmentInternal(g_mode, src, dest);
} else {
success = g_validator.ValidateCleanAndSegmentInternal(
GraphemeNormMode::kGlyphSplit, src, &graphemes);
std::unique_ptr<Validator> validator(
ScriptValidator(script, report_errors));
for (const auto& grapheme : graphemes) {
if (!validator->ValidateCleanAndSegmentInternal(g_mode, grapheme, dest)) {
success = false;
}
}
}
return success;
}
// Factory method that understands how to map script to the right subclass.
std::unique_ptr<Validator> Validator::ScriptValidator(ViramaScript script,
bool report_errors) {
switch (script) {
case ViramaScript::kNonVirama:
return std::unique_ptr<Validator>(
new ValidateGrapheme(script, report_errors));
case ViramaScript::kMyanmar:
return std::unique_ptr<Validator>(
new ValidateMyanmar(script, report_errors));
case ViramaScript::kKhmer:
return std::unique_ptr<Validator>(
new ValidateKhmer(script, report_errors));
default:
return std::unique_ptr<Validator>(
new ValidateIndic(script, report_errors));
}
}
// Internal version of the public static ValidateCleanAndSegment.
// Validates and cleans the src vector of unicodes to the *dest, according to
// its type and the given g_mode.
// In case of validation error, returns false and returns as much as possible
// of the input, without discarding invalid text.
bool Validator::ValidateCleanAndSegmentInternal(
GraphemeNormMode g_mode, const std::vector<char32>& src,
std::vector<std::vector<char32>>* dest) {
Clear();
ComputeClassCodes(src);
bool success = true;
for (codes_used_ = 0; codes_used_ < codes_.size();) {
if (!ConsumeGraphemeIfValid()) {
success = false;
++codes_used_;
}
}
MoveResultsToDest(g_mode, dest);
return success;
}
// Moves the results from parts_ or output_ to dest according to g_mode.
void Validator::MoveResultsToDest(GraphemeNormMode g_mode,
std::vector<std::vector<char32>>* dest) {
if (g_mode == GraphemeNormMode::kIndividualUnicodes) {
// Append each element of the combined output_ that we made as a new vector
// in dest.
dest->reserve(dest->size() + output_.size());
for (char32 ch : output_) dest->push_back({ch});
} else if (g_mode == GraphemeNormMode::kGlyphSplit) {
// Append all the parts_ that we made onto dest.
std::move(parts_.begin(), parts_.end(), std::back_inserter(*dest));
} else if (g_mode == GraphemeNormMode::kCombined || dest->empty()) {
// Append the combined output_ that we made onto dest as one new vector.
dest->push_back(std::vector<char32>());
output_.swap(dest->back());
} else { // kNone.
// Append the combined output_ that we made onto the last existing element
// of dest.
dest->back().insert(dest->back().end(), output_.begin(), output_.end());
}
}
bool CmpPairSecond(const std::pair<int, int>& p1,
const std::pair<int, int>& p2) {
return p1.second < p2.second;
}
// Computes and returns the ViramaScript corresponding to the most frequent
// virama-using script in the input, or kNonVirama if none are present.
/* static */
ViramaScript Validator::MostFrequentViramaScript(
const std::vector<char32>& utf32) {
std::unordered_map<int, int> histogram;
for (char32 ch : utf32) {
// Determine the codepage base. For the Indic scripts, and Khmer, it is
// sufficient to divide by kIndicCodePageSize but Myanmar is all over the
// unicode code space, so use its script id.
int base = ch / kIndicCodePageSize;
IcuErrorCode err;
UScriptCode script_code = uscript_getScript(ch, err);
if ((kMinIndicUnicode <= ch && ch <= kMaxViramaScriptUnicode &&
script_code != USCRIPT_COMMON) ||
script_code == USCRIPT_MYANMAR) {
if (script_code == USCRIPT_MYANMAR)
base = static_cast<char32>(ViramaScript::kMyanmar) / kIndicCodePageSize;
++histogram[base];
}
}
if (!histogram.empty()) {
int base =
std::max_element(histogram.begin(), histogram.end(), CmpPairSecond)
->first;
char32 codebase = static_cast<char32>(base * kIndicCodePageSize);
// Check for validity.
if (codebase == static_cast<char32>(ViramaScript::kMyanmar) ||
codebase == static_cast<char32>(ViramaScript::kKhmer) ||
(static_cast<char32>(ViramaScript::kDevanagari) <= codebase &&
codebase <= static_cast<char32>(ViramaScript::kSinhala))) {
return static_cast<ViramaScript>(codebase);
}
}
return ViramaScript::kNonVirama;
}
// Returns true if the given UTF-32 unicode is a "virama" character.
/* static */
bool Validator::IsVirama(char32 unicode) {
return (kMinIndicUnicode <= unicode && unicode <= kMaxSinhalaUnicode &&
(unicode & 0x7f) == 0x4d) ||
unicode == kSinhalaVirama || unicode == kMyanmarVirama ||
unicode == kKhmerVirama;
}
// Returns true if the given UTF-32 unicode is a vedic accent.
/* static */
bool Validator::IsVedicAccent(char32 unicode) {
return 0x1cd0 <= unicode && unicode < 0x1d00;
}
// Returns true if the script is one that uses subscripts for conjuncts.
bool Validator::IsSubscriptScript() const {
return script_ == ViramaScript::kTelugu ||
script_ == ViramaScript::kKannada ||
script_ == ViramaScript::kMyanmar || script_ == ViramaScript::kKhmer;
}
void Validator::ComputeClassCodes(const std::vector<char32>& text) {
codes_.reserve(text.size());
for (char32 c : text) {
codes_.push_back(std::make_pair(UnicodeToCharClass(c), c));
}
}
// Resets to the initial state.
void Validator::Clear() {
codes_.clear();
parts_.clear();
output_.clear();
codes_used_ = 0;
output_used_ = 0;
}
} // namespace tesseract