tesseract/unittest/equationdetect_test.cc
Stefan Weil 8e7b1119b5 Run more unittests with the user's locale
Hopefully this improves the test coverage.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2019-05-16 18:12:55 +02:00

528 lines
18 KiB
C++

#include "tesseract/ccmain/equationdetect.h"
#include <memory>
#include <string>
#include <utility>
#include "leptonica/include/allheaders.h"
#include "tesseract/ccmain/tesseractclass.h"
#include "tesseract/textord/colpartitiongrid.h"
#include "util/gtl/map_util.h"
#include "util/gtl/stl_util.h"
namespace tesseract {
class TestableEquationDetect : public EquationDetect {
public:
TestableEquationDetect(const char* tessdata, Tesseract* lang_tesseract)
: EquationDetect(tessdata, "equ") {
SetLangTesseract(lang_tesseract);
}
// Insert a certain math and digit blobs into part.
void AddMathDigitBlobs(const int math_blobs, const int digit_blobs,
const int total_blobs, ColPartition* part) {
CHECK(part != nullptr);
CHECK_LE(math_blobs + digit_blobs, total_blobs);
int count = 0;
for (int i = 0; i < math_blobs; i++, count++) {
BLOBNBOX* blob = new BLOBNBOX();
blob->set_special_text_type(BSTT_MATH);
part->AddBox(blob);
}
for (int i = 0; i < digit_blobs; i++, count++) {
BLOBNBOX* blob = new BLOBNBOX();
blob->set_special_text_type(BSTT_DIGIT);
part->AddBox(blob);
}
for (int i = count; i < total_blobs; i++) {
BLOBNBOX* blob = new BLOBNBOX();
blob->set_special_text_type(BSTT_NONE);
part->AddBox(blob);
}
}
// Set up pix_binary for lang_tesseract_.
void SetPixBinary(Pix* pix) {
CHECK_EQ(1, pixGetDepth(pix));
*(lang_tesseract_->mutable_pix_binary()) = pix;
}
void RunIdentifySpecialText(BLOBNBOX* blob, const int height_th) {
IdentifySpecialText(blob, height_th);
}
BlobSpecialTextType RunEstimateTypeForUnichar(const char* val) {
const UNICHARSET& unicharset = lang_tesseract_->unicharset;
return EstimateTypeForUnichar(unicharset, unicharset.unichar_to_id(val));
}
EquationDetect::IndentType RunIsIndented(ColPartitionGrid* part_grid,
ColPartition* part) {
this->part_grid_ = part_grid;
return IsIndented(part);
}
bool RunIsNearSmallNeighbor(const TBOX& seed_box, const TBOX& part_box) {
return IsNearSmallNeighbor(seed_box, part_box);
}
bool RunCheckSeedBlobsCount(ColPartition* part) {
return CheckSeedBlobsCount(part);
}
float RunComputeForegroundDensity(const TBOX& tbox) {
return ComputeForegroundDensity(tbox);
}
int RunCountAlignment(const GenericVector<int>& sorted_vec, const int val) {
return CountAlignment(sorted_vec, val);
}
void RunSplitCPHorLite(ColPartition* part,
GenericVector<TBOX>* splitted_boxes) {
SplitCPHorLite(part, splitted_boxes);
}
void RunSplitCPHor(ColPartition* part,
GenericVector<ColPartition*>* parts_splitted) {
SplitCPHor(part, parts_splitted);
}
void TestComputeCPsSuperBBox(const TBOX& box, ColPartitionGrid* part_grid) {
CHECK(part_grid != nullptr);
part_grid_ = part_grid;
ComputeCPsSuperBBox();
EXPECT_TRUE(*cps_super_bbox_ == box);
}
};
class EquationFinderTest : public testing::Test {
protected:
std::unique_ptr<TestableEquationDetect> equation_det_;
std::unique_ptr<Tesseract> tesseract_;
// The directory for testdata;
string testdata_dir_;
void SetUp() {
std::locale::global(std::locale(""));
string tessdata_dir = file::JoinPath(FLAGS_test_srcdir, "tessdata");
tesseract_.reset(new Tesseract());
tesseract_->init_tesseract(tessdata_dir.c_str(), "eng", OEM_TESSERACT_ONLY);
tesseract_->set_source_resolution(300);
equation_det_.reset(
new TestableEquationDetect(tessdata_dir.c_str(), tesseract_.get()));
equation_det_->SetResolution(300);
testdata_dir_ = file::JoinPath(FLAGS_test_srcdir, "testdata");
}
void TearDown() {
tesseract_.reset(nullptr);
equation_det_.reset(nullptr);
}
// Add a BLOCK covering the whole page.
void AddPageBlock(Pix* pix, BLOCK_LIST* blocks) {
CHECK(pix != nullptr);
CHECK(blocks != nullptr);
BLOCK_IT block_it(blocks);
BLOCK* block =
new BLOCK("", true, 0, 0, 0, 0, pixGetWidth(pix), pixGetHeight(pix));
block_it.add_to_end(block);
}
// Create col partitions, add into part_grid, and put them into all_parts.
void CreateColParts(const int rows, const int cols,
ColPartitionGrid* part_grid,
std::vector<ColPartition*>* all_parts) {
const int kWidth = 10, kHeight = 10;
ClearParts(all_parts);
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
int left = x * kWidth * 2, bottom = y * kHeight * 2;
TBOX box(left, bottom, left + kWidth, bottom + kHeight);
ColPartition* part = ColPartition::FakePartition(box, PT_FLOWING_TEXT,
BRT_TEXT, BTFT_NONE);
part_grid->InsertBBox(true, true, part);
all_parts->push_back(part);
}
}
}
void ClearParts(std::vector<ColPartition*>* all_parts) {
for (int i = 0; i < all_parts->size(); ++i) {
(*all_parts)[i]->DeleteBoxes();
delete ((*all_parts)[i]);
}
}
// Create a BLOBNBOX object with bounding box tbox, and add it into part.
void AddBlobIntoPart(const TBOX& tbox, ColPartition* part) {
CHECK(part != nullptr);
BLOBNBOX* blob = new BLOBNBOX();
blob->set_bounding_box(tbox);
part->AddBox(blob);
}
};
TEST_F(EquationFinderTest, IdentifySpecialText) {
// Load Image.
string imagefile = file::JoinPath(testdata_dir_, "equ_gt1.tif");
Pix* pix_binary = pixRead(imagefile.c_str());
CHECK(pix_binary != nullptr && pixGetDepth(pix_binary) == 1);
// Get components.
BLOCK_LIST blocks;
TO_BLOCK_LIST to_blocks;
AddPageBlock(pix_binary, &blocks);
Textord* textord = tesseract_->mutable_textord();
textord->find_components(pix_binary, &blocks, &to_blocks);
// Identify special texts from to_blocks.
TO_BLOCK_IT to_block_it(&to_blocks);
__gnu_cxx::hash_map<int, int> stt_count;
for (to_block_it.mark_cycle_pt(); !to_block_it.cycled_list();
to_block_it.forward()) {
TO_BLOCK* to_block = to_block_it.data();
BLOBNBOX_IT blob_it(&(to_block->blobs));
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
BLOBNBOX* blob = blob_it.data();
// blob->set_special_text_type(BSTT_NONE);
equation_det_->RunIdentifySpecialText(blob, 0);
InsertIfNotPresent(&stt_count, blob->special_text_type(), 0);
stt_count[blob->special_text_type()]++;
}
}
// Verify the number, but allow a range of +/- kCountRange before squealing.
const int kCountRange = 3;
EXPECT_GE(39 + kCountRange, stt_count[BSTT_NONE]);
EXPECT_LE(39 - kCountRange, stt_count[BSTT_NONE]);
// if you count all the subscripts etc, there are ~45 italic chars.
EXPECT_GE(45 + kCountRange, stt_count[BSTT_ITALIC]);
EXPECT_LE(45 - kCountRange, stt_count[BSTT_ITALIC]);
EXPECT_GE(41 + kCountRange, stt_count[BSTT_DIGIT]);
EXPECT_LE(41 - kCountRange, stt_count[BSTT_DIGIT]);
EXPECT_GE(50 + kCountRange, stt_count[BSTT_MATH]);
EXPECT_LE(50 - kCountRange, stt_count[BSTT_MATH]);
EXPECT_GE(10 + kCountRange, stt_count[BSTT_UNCLEAR]);
EXPECT_LE(10 - kCountRange, stt_count[BSTT_UNCLEAR]);
// Release memory.
pixDestroy(&pix_binary);
}
TEST_F(EquationFinderTest, EstimateTypeForUnichar) {
// Test abc characters.
EXPECT_EQ(BSTT_NONE, equation_det_->RunEstimateTypeForUnichar("a"));
EXPECT_EQ(BSTT_NONE, equation_det_->RunEstimateTypeForUnichar("c"));
// Test punctuation characters.
EXPECT_EQ(BSTT_NONE, equation_det_->RunEstimateTypeForUnichar("'"));
EXPECT_EQ(BSTT_NONE, equation_det_->RunEstimateTypeForUnichar(","));
// Test digits.
EXPECT_EQ(BSTT_DIGIT, equation_det_->RunEstimateTypeForUnichar("1"));
EXPECT_EQ(BSTT_DIGIT, equation_det_->RunEstimateTypeForUnichar("4"));
EXPECT_EQ(BSTT_DIGIT, equation_det_->RunEstimateTypeForUnichar("|"));
// Test math symbols.
EXPECT_EQ(BSTT_MATH, equation_det_->RunEstimateTypeForUnichar("("));
EXPECT_EQ(BSTT_MATH, equation_det_->RunEstimateTypeForUnichar("+"));
}
TEST_F(EquationFinderTest, IsIndented) {
ColPartitionGrid part_grid(10, ICOORD(0, 0), ICOORD(1000, 1000));
// Create five ColPartitions:
// part 1: ************
// part 2: *********
// part 3: *******
// part 4: *****
//
// part 5: ********
TBOX box1(0, 950, 999, 999);
ColPartition* part1 =
ColPartition::FakePartition(box1, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
part_grid.InsertBBox(true, true, part1);
TBOX box2(300, 920, 900, 940);
ColPartition* part2 =
ColPartition::FakePartition(box2, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
part_grid.InsertBBox(true, true, part2);
TBOX box3(0, 900, 600, 910);
ColPartition* part3 =
ColPartition::FakePartition(box3, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
part_grid.InsertBBox(true, true, part3);
TBOX box4(300, 890, 600, 899);
ColPartition* part4 =
ColPartition::FakePartition(box4, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
part_grid.InsertBBox(true, true, part4);
TBOX box5(300, 500, 900, 510);
ColPartition* part5 =
ColPartition::FakePartition(box5, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
part_grid.InsertBBox(true, true, part5);
// Test
// part1 should be no indent.
EXPECT_EQ(EquationDetect::NO_INDENT,
equation_det_->RunIsIndented(&part_grid, part1));
// part2 should be left indent in terms of part1.
EXPECT_EQ(EquationDetect::LEFT_INDENT,
equation_det_->RunIsIndented(&part_grid, part2));
// part3 should be right indent.
EXPECT_EQ(EquationDetect::RIGHT_INDENT,
equation_det_->RunIsIndented(&part_grid, part3));
// part4 should be both indented.
EXPECT_EQ(EquationDetect::BOTH_INDENT,
equation_det_->RunIsIndented(&part_grid, part4));
// part5 should be no indent because it is too far from part1.
EXPECT_EQ(EquationDetect::NO_INDENT,
equation_det_->RunIsIndented(&part_grid, part5));
// Release memory.
part1->DeleteBoxes();
delete (part1);
part2->DeleteBoxes();
delete (part2);
part3->DeleteBoxes();
delete (part3);
part4->DeleteBoxes();
delete (part4);
part5->DeleteBoxes();
delete (part5);
}
TEST_F(EquationFinderTest, IsNearSmallNeighbor) {
// Create four tboxes:
// part 1, part 2
// ***** *****
// part 3: *****
//
// part 4: *****************
TBOX box1(0, 950, 499, 999);
TBOX box2(500, 950, 999, 998);
TBOX box3(0, 900, 499, 949);
TBOX box4(0, 550, 499, 590);
// Test
// box2 should be box1's near neighbor but not vice versa.
EXPECT_TRUE(equation_det_->RunIsNearSmallNeighbor(box1, box2));
EXPECT_FALSE(equation_det_->RunIsNearSmallNeighbor(box2, box1));
// box1 and box3 should be near neighbors of each other.
EXPECT_TRUE(equation_det_->RunIsNearSmallNeighbor(box1, box3));
EXPECT_FALSE(equation_det_->RunIsNearSmallNeighbor(box2, box3));
// box2 and box3 should not be near neighbors of each other.
EXPECT_FALSE(equation_det_->RunIsNearSmallNeighbor(box2, box3));
EXPECT_FALSE(equation_det_->RunIsNearSmallNeighbor(box3, box2));
// box4 should not be the near neighbor of any one.
EXPECT_FALSE(equation_det_->RunIsNearSmallNeighbor(box1, box4));
EXPECT_FALSE(equation_det_->RunIsNearSmallNeighbor(box2, box4));
EXPECT_FALSE(equation_det_->RunIsNearSmallNeighbor(box3, box4));
}
TEST_F(EquationFinderTest, CheckSeedBlobsCount) {
TBOX box(0, 950, 999, 999);
ColPartition* part1 =
ColPartition::FakePartition(box, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
ColPartition* part2 =
ColPartition::FakePartition(box, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
ColPartition* part3 =
ColPartition::FakePartition(box, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
ColPartition* part4 =
ColPartition::FakePartition(box, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
// Part 1: 8 math, 0 digit, 20 total.
equation_det_->AddMathDigitBlobs(8, 0, 20, part1);
EXPECT_TRUE(equation_det_->RunCheckSeedBlobsCount(part1));
// Part 2: 1 math, 8 digit, 20 total.
equation_det_->AddMathDigitBlobs(1, 8, 20, part2);
EXPECT_FALSE(equation_det_->RunCheckSeedBlobsCount(part2));
// Part 3: 3 math, 8 digit, 8 total.
equation_det_->AddMathDigitBlobs(3, 8, 20, part3);
EXPECT_TRUE(equation_det_->RunCheckSeedBlobsCount(part3));
// Part 4: 8 math, 0 digit, 8 total.
equation_det_->AddMathDigitBlobs(0, 0, 8, part4);
EXPECT_FALSE(equation_det_->RunCheckSeedBlobsCount(part4));
// Release memory.
part1->DeleteBoxes();
delete (part1);
part2->DeleteBoxes();
delete (part2);
part3->DeleteBoxes();
delete (part3);
part4->DeleteBoxes();
delete (part4);
}
TEST_F(EquationFinderTest, ComputeForegroundDensity) {
// Create the pix with top half foreground, bottom half background.
int width = 1024, height = 768;
Pix* pix = pixCreate(width, height, 1);
pixRasterop(pix, 0, 0, width, height / 2, PIX_SET, nullptr, 0, 0);
TBOX box1(100, 0, 140, 140), box2(100, height / 2 - 20, 140, height / 2 + 20),
box3(100, height - 40, 140, height);
equation_det_->SetPixBinary(pix);
// Verify
EXPECT_NEAR(0.0, equation_det_->RunComputeForegroundDensity(box1), 0.0001f);
EXPECT_NEAR(0.5, equation_det_->RunComputeForegroundDensity(box2), 0.0001f);
EXPECT_NEAR(1.0, equation_det_->RunComputeForegroundDensity(box3), 0.0001f);
}
TEST_F(EquationFinderTest, CountAlignment) {
GenericVector<int> vec;
vec.push_back(1);
vec.push_back(1);
vec.push_back(1);
vec.push_back(100);
vec.push_back(200);
vec.push_back(200);
// Test the right point.
EXPECT_EQ(3, equation_det_->RunCountAlignment(vec, 1));
EXPECT_EQ(1, equation_det_->RunCountAlignment(vec, 100));
EXPECT_EQ(2, equation_det_->RunCountAlignment(vec, 200));
// Test the near neighbors.
EXPECT_EQ(3, equation_det_->RunCountAlignment(vec, 3));
EXPECT_EQ(1, equation_det_->RunCountAlignment(vec, 99));
EXPECT_EQ(2, equation_det_->RunCountAlignment(vec, 202));
// Test the far neighbors.
EXPECT_EQ(0, equation_det_->RunCountAlignment(vec, 150));
EXPECT_EQ(0, equation_det_->RunCountAlignment(vec, 50));
EXPECT_EQ(0, equation_det_->RunCountAlignment(vec, 250));
}
TEST_F(EquationFinderTest, ComputeCPsSuperBBox) {
Pix* pix = pixCreate(1001, 1001, 1);
equation_det_->SetPixBinary(pix);
ColPartitionGrid part_grid(10, ICOORD(0, 0), ICOORD(1000, 1000));
TBOX box1(0, 0, 999, 99);
ColPartition* part1 =
ColPartition::FakePartition(box1, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
TBOX box2(0, 100, 499, 199);
ColPartition* part2 =
ColPartition::FakePartition(box2, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
TBOX box3(500, 100, 999, 199);
ColPartition* part3 =
ColPartition::FakePartition(box3, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
TBOX box4(0, 200, 999, 299);
ColPartition* part4 =
ColPartition::FakePartition(box4, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
TBOX box5(0, 900, 999, 999);
ColPartition* part5 =
ColPartition::FakePartition(box5, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
// Add part1->part3 into part_grid and test.
part_grid.InsertBBox(true, true, part1);
part_grid.InsertBBox(true, true, part2);
part_grid.InsertBBox(true, true, part3);
TBOX super_box(0, 0, 999, 199);
equation_det_->TestComputeCPsSuperBBox(super_box, &part_grid);
// Add part4 and test.
part_grid.InsertBBox(true, true, part4);
TBOX super_box2(0, 0, 999, 299);
equation_det_->TestComputeCPsSuperBBox(super_box2, &part_grid);
// Add part5 and test.
part_grid.InsertBBox(true, true, part5);
TBOX super_box3(0, 0, 999, 999);
equation_det_->TestComputeCPsSuperBBox(super_box3, &part_grid);
// Release memory.
part1->DeleteBoxes();
delete (part1);
part2->DeleteBoxes();
delete (part2);
part3->DeleteBoxes();
delete (part3);
part4->DeleteBoxes();
delete (part4);
part5->DeleteBoxes();
delete (part5);
}
TEST_F(EquationFinderTest, SplitCPHorLite) {
TBOX box(0, 0, 999, 99);
ColPartition* part =
ColPartition::FakePartition(box, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
part->DeleteBoxes();
part->set_median_width(10);
GenericVector<TBOX> splitted_boxes;
// Test an empty part.
equation_det_->RunSplitCPHorLite(part, &splitted_boxes);
EXPECT_TRUE(splitted_boxes.empty());
// Test with one blob.
AddBlobIntoPart(TBOX(0, 0, 10, 50), part);
equation_det_->RunSplitCPHorLite(part, &splitted_boxes);
EXPECT_EQ(1, splitted_boxes.size());
EXPECT_TRUE(TBOX(0, 0, 10, 50) == splitted_boxes[0]);
// Add more blob and test.
AddBlobIntoPart(TBOX(11, 0, 20, 60), part);
AddBlobIntoPart(TBOX(25, 0, 30, 55), part); // break point.
AddBlobIntoPart(TBOX(100, 0, 110, 15), part);
AddBlobIntoPart(TBOX(125, 0, 140, 45), part); // break point.
AddBlobIntoPart(TBOX(500, 0, 540, 35), part); // break point.
equation_det_->RunSplitCPHorLite(part, &splitted_boxes);
// Verify.
EXPECT_EQ(3, splitted_boxes.size());
EXPECT_TRUE(TBOX(0, 0, 30, 60) == splitted_boxes[0]);
EXPECT_TRUE(TBOX(100, 0, 140, 45) == splitted_boxes[1]);
EXPECT_TRUE(TBOX(500, 0, 540, 35) == splitted_boxes[2]);
part->DeleteBoxes();
delete (part);
}
TEST_F(EquationFinderTest, SplitCPHor) {
TBOX box(0, 0, 999, 99);
ColPartition* part =
ColPartition::FakePartition(box, PT_FLOWING_TEXT, BRT_TEXT, BTFT_NONE);
part->DeleteBoxes();
part->set_median_width(10);
GenericVector<ColPartition*> parts_splitted;
// Test an empty part.
equation_det_->RunSplitCPHor(part, &parts_splitted);
EXPECT_TRUE(parts_splitted.empty());
// Test with one blob.
AddBlobIntoPart(TBOX(0, 0, 10, 50), part);
equation_det_->RunSplitCPHor(part, &parts_splitted);
EXPECT_EQ(1, parts_splitted.size());
EXPECT_TRUE(TBOX(0, 0, 10, 50) == parts_splitted[0]->bounding_box());
// Add more blob and test.
AddBlobIntoPart(TBOX(11, 0, 20, 60), part);
AddBlobIntoPart(TBOX(25, 0, 30, 55), part); // break point.
AddBlobIntoPart(TBOX(100, 0, 110, 15), part);
AddBlobIntoPart(TBOX(125, 0, 140, 45), part); // break point.
AddBlobIntoPart(TBOX(500, 0, 540, 35), part); // break point.
equation_det_->RunSplitCPHor(part, &parts_splitted);
// Verify.
EXPECT_EQ(3, parts_splitted.size());
EXPECT_TRUE(TBOX(0, 0, 30, 60) == parts_splitted[0]->bounding_box());
EXPECT_TRUE(TBOX(100, 0, 140, 45) == parts_splitted[1]->bounding_box());
EXPECT_TRUE(TBOX(500, 0, 540, 35) == parts_splitted[2]->bounding_box());
parts_splitted.delete_data_pointers();
part->DeleteBoxes();
delete (part);
}
} // namespace tesseract