tesseract/ccstruct/coutln.h

292 lines
12 KiB
C++

/**********************************************************************
* File: coutln.h (Formerly:
*coutline.c) Description: Code for the C_OUTLINE class. Author:
*Ray Smith
* Created: Mon Oct 07 16:01:57 BST 1991
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#ifndef COUTLN_H
#define COUTLN_H
#include "crakedge.h"
#include "mod128.h"
#include "bits16.h"
#include "rect.h"
#include "blckerr.h"
#include "scrollview.h"
class DENORM;
#define INTERSECTING MAX_INT16//no winding number
//mask to get step
#define STEP_MASK 3
enum C_OUTLINE_FLAGS
{
COUT_INVERSE //White on black blob
};
// Simple struct to hold the 3 values needed to compute a more precise edge
// position and direction. The offset_numerator is the difference between the
// grey threshold and the mean pixel value. pixel_diff is the difference between
// the pixels in the edge. Consider the following row of pixels: p1 p2 p3 p4 p5
// Say the image was thresholded at threshold t, making p1, p2, p3 black
// and p4, p5 white (p1, p2, p3 < t, and p4, p5 >= t), but suppose that
// max(p[i+1] - p[i]) is p3 - p2. Then the extrapolated position of the edge,
// based on the maximum gradient, is at the crack between p2 and p3 plus the
// offset (t - (p2+p3)/2)/(p3 - p2). We store the pixel difference p3-p2
// denominator in pixel_diff and the offset numerator, relative to the original
// binary edge (t - (p2+p3)/2) - (p3 -p2) in offset_numerator.
// The sign of offset_numerator and pixel_diff are manipulated to ensure
// that the pixel_diff, which will be used as a weight, is always positive.
// The direction stores the quantized feature direction for the given step
// computed from the edge gradient. (Using binary_angle_plus_pi.)
// If the pixel_diff is zero, it means that the direction of the gradient
// is in conflict with the step direction, so this step is to be ignored.
struct EdgeOffset {
inT8 offset_numerator;
uinT8 pixel_diff;
uinT8 direction;
};
class DLLSYM C_OUTLINE; //forward declaration
struct Pix;
ELISTIZEH (C_OUTLINE)
class DLLSYM C_OUTLINE:public ELIST_LINK {
public:
C_OUTLINE() { //empty constructor
steps = NULL;
offsets = NULL;
}
C_OUTLINE( //constructor
CRACKEDGE *startpt, //from edge detector
ICOORD bot_left, //bounding box //length of loop
ICOORD top_right,
inT16 length);
C_OUTLINE(ICOORD startpt, //start of loop
DIR128 *new_steps, //steps in loop
inT16 length); //length of loop
//outline to copy
C_OUTLINE(C_OUTLINE *srcline, FCOORD rotation); //and rotate
// Build a fake outline, given just a bounding box and append to the list.
static void FakeOutline(const TBOX& box, C_OUTLINE_LIST* outlines);
~C_OUTLINE () { //destructor
if (steps != NULL)
free_mem(steps);
steps = NULL;
delete [] offsets;
}
BOOL8 flag( //test flag
C_OUTLINE_FLAGS mask) const { //flag to test
return flags.bit (mask);
}
void set_flag( //set flag value
C_OUTLINE_FLAGS mask, //flag to test
BOOL8 value) { //value to set
flags.set_bit (mask, value);
}
C_OUTLINE_LIST *child() { //get child list
return &children;
}
//access function
const TBOX &bounding_box() const {
return box;
}
void set_step( //set a step
inT16 stepindex, //index of step
inT8 stepdir) { //chain code
int shift = stepindex%4 * 2;
uinT8 mask = 3 << shift;
steps[stepindex/4] = ((stepdir << shift) & mask) |
(steps[stepindex/4] & ~mask);
//squeeze 4 into byte
}
void set_step( //set a step
inT16 stepindex, //index of step
DIR128 stepdir) { //direction
//clean it
inT8 chaindir = stepdir.get_dir() >> (DIRBITS - 2);
//difference
set_step(stepindex, chaindir);
//squeeze 4 into byte
}
inT32 pathlength() const { //get path length
return stepcount;
}
// Return step at a given index as a DIR128.
DIR128 step_dir(int index) const {
return DIR128((inT16)(((steps[index/4] >> (index%4 * 2)) & STEP_MASK) <<
(DIRBITS - 2)));
}
// Return the step vector for the given outline position.
ICOORD step(int index) const { // index of step
return step_coords[chain_code(index)];
}
// get start position
const ICOORD &start_pos() const {
return start;
}
// Returns the position at the given index on the outline.
// NOT to be used lightly, as it has to iterate the outline to find out.
ICOORD position_at_index(int index) const {
ICOORD pos = start;
for (int i = 0; i < index; ++i)
pos += step(i);
return pos;
}
// Returns the sub-pixel accurate position given the integer position pos
// at the given index on the outline. pos may be a return value of
// position_at_index, or computed by repeatedly adding step to the
// start_pos() in the usual way.
FCOORD sub_pixel_pos_at_index(const ICOORD& pos, int index) const {
const ICOORD& step_to_next(step(index));
FCOORD f_pos(pos.x() + step_to_next.x() / 2.0f,
pos.y() + step_to_next.y() / 2.0f);
if (offsets != NULL && offsets[index].pixel_diff > 0) {
float offset = offsets[index].offset_numerator;
offset /= offsets[index].pixel_diff;
if (step_to_next.x() != 0)
f_pos.set_y(f_pos.y() + offset);
else
f_pos.set_x(f_pos.x() + offset);
}
return f_pos;
}
// Returns the step direction for the given index or -1 if there is none.
int direction_at_index(int index) const {
if (offsets != NULL && offsets[index].pixel_diff > 0)
return offsets[index].direction;
return -1;
}
// Returns the edge strength for the given index.
// If there are no recorded edge strengths, returns 1 (assuming the image
// is binary). Returns 0 if the gradient direction conflicts with the
// step direction, indicating that this position could be skipped.
int edge_strength_at_index(int index) const {
if (offsets != NULL)
return offsets[index].pixel_diff;
return 1;
}
// Return the step as a chain code (0-3) related to the standard feature
// direction of binary_angle_plus_pi by:
// chain_code * 64 = feature direction.
int chain_code(int index) const { // index of step
return (steps[index / 4] >> (index % 4 * 2)) & STEP_MASK;
}
inT32 area() const; // Returns area of self and 1st level children.
inT32 perimeter() const; // Total perimeter of self and 1st level children.
inT32 outer_area() const; // Returns area of self only.
inT32 count_transitions( //count maxima
inT32 threshold); //size threshold
BOOL8 operator< ( //containment test
const C_OUTLINE & other) const;
BOOL8 operator> ( //containment test
C_OUTLINE & other) const
{
return other < *this; //use the < to do it
}
inT16 winding_number( //get winding number
ICOORD testpt) const; //around this point
//get direction
inT16 turn_direction() const;
void reverse(); //reverse direction
void move( // reposition outline
const ICOORD vec); // by vector
// Returns true if *this and its children are legally nested.
// The outer area of a child should have the opposite sign to the
// parent. If not, it means we have discarded an outline in between
// (probably due to excessive length).
bool IsLegallyNested() const;
// If this outline is smaller than the given min_size, delete this and
// remove from its list, via *it, after checking that *it points to this.
// Otherwise, if any children of this are too small, delete them.
// On entry, *it must be an iterator pointing to this. If this gets deleted
// then this is extracted from *it, so an iteration can continue.
void RemoveSmallRecursive(int min_size, C_OUTLINE_IT* it);
// Adds sub-pixel resolution EdgeOffsets for the outline if the supplied
// pix is 8-bit. Does nothing otherwise.
void ComputeEdgeOffsets(int threshold, Pix* pix);
// Adds sub-pixel resolution EdgeOffsets for the outline using only
// a binary image source.
void ComputeBinaryOffsets();
// Renders the outline to the given pix, with left and top being
// the coords of the upper-left corner of the pix.
void render(int left, int top, Pix* pix) const;
// Renders just the outline to the given pix (no fill), with left and top
// being the coords of the upper-left corner of the pix.
void render_outline(int left, int top, Pix* pix) const;
#ifndef GRAPHICS_DISABLED
void plot( //draw one
ScrollView* window, //window to draw in
ScrollView::Color colour) const; //colour to draw it
// Draws the outline in the given colour, normalized using the given denorm,
// making use of sub-pixel accurate information if available.
void plot_normed(const DENORM& denorm, ScrollView::Color colour,
ScrollView* window) const;
#endif // GRAPHICS_DISABLED
C_OUTLINE& operator=(const C_OUTLINE& source);
static C_OUTLINE* deep_copy(const C_OUTLINE* src) {
C_OUTLINE* outline = new C_OUTLINE;
*outline = *src;
return outline;
}
static ICOORD chain_step(int chaindir);
// The maximum length of any outline. The stepcount is stored as 16 bits,
// but it is probably not a good idea to increase this constant by much
// and switch to 32 bits, as it plays an important role in keeping huge
// outlines invisible, which prevents bad speed behavior.
static const int kMaxOutlineLength = 16000;
private:
// Helper for ComputeBinaryOffsets. Increments pos, dir_counts, pos_totals
// by the step, increment, and vertical step ? x : y position * increment
// at step s Mod stepcount respectively. Used to add or subtract the
// direction and position to/from accumulators of a small neighbourhood.
void increment_step(int s, int increment, ICOORD* pos, int* dir_counts,
int* pos_totals) const;
int step_mem() const { return (stepcount+3) / 4; }
TBOX box; // bounding box
ICOORD start; // start coord
inT16 stepcount; // no of steps
BITS16 flags; // flags about outline
uinT8 *steps; // step array
EdgeOffset* offsets; // Higher precision edge.
C_OUTLINE_LIST children; // child elements
static ICOORD step_coords[4];
};
#endif