tesseract/src/ccstruct/imagedata.cpp
Stefan Weil d8d63fd71b Optimize performance with clang-tidy
The code was partially formatted with clang-format and optimized with

    clang-tidy --checks="-*,perfor*" --fix src/*/*.cpp

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2021-11-14 15:54:04 +01:00

763 lines
24 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: imagedata.cpp
// Description: Class to hold information about a single multi-page tiff
// training file and its corresponding boxes or text file.
// Author: Ray Smith
//
// (C) Copyright 2013, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
# include "config_auto.h"
#endif
#include "imagedata.h"
#include "boxread.h" // for ReadMemBoxes
#include "rect.h" // for TBOX
#include "scrollview.h" // for ScrollView, ScrollView::CYAN, ScrollView::NONE
#include "tprintf.h" // for tprintf
#include "helpers.h" // for IntCastRounded, TRand, ClipToRange, Modulo
#include "serialis.h" // for TFile
#include <allheaders.h> // for pixDestroy, pixGetHeight, pixGetWidth, lept_...
#include <cinttypes> // for PRId64
namespace tesseract {
// Number of documents to read ahead while training. Doesn't need to be very
// large.
const int kMaxReadAhead = 8;
ImageData::ImageData() : page_number_(-1), vertical_text_(false) {}
// Takes ownership of the pix and destroys it.
ImageData::ImageData(bool vertical, Image pix)
: page_number_(0), vertical_text_(vertical) {
SetPix(pix);
}
ImageData::~ImageData() {
#ifdef TESSERACT_IMAGEDATA_AS_PIX
internal_pix_.destroy();
#endif
}
// Builds and returns an ImageData from the basic data. Note that imagedata,
// truth_text, and box_text are all the actual file data, NOT filenames.
ImageData *ImageData::Build(const char *name, int page_number, const char *lang,
const char *imagedata, int imagedatasize,
const char *truth_text, const char *box_text) {
auto *image_data = new ImageData();
image_data->imagefilename_ = name;
image_data->page_number_ = page_number;
image_data->language_ = lang;
// Save the imagedata.
// TODO: optimize resize (no init).
image_data->image_data_.resize(imagedatasize);
memcpy(&image_data->image_data_[0], imagedata, imagedatasize);
if (!image_data->AddBoxes(box_text)) {
if (truth_text == nullptr || truth_text[0] == '\0') {
tprintf("Error: No text corresponding to page %d from image %s!\n",
page_number, name);
delete image_data;
return nullptr;
}
image_data->transcription_ = truth_text;
// If we have no boxes, the transcription is in the 0th box_texts_.
image_data->box_texts_.emplace_back(truth_text);
// We will create a box for the whole image on PreScale, to save unpacking
// the image now.
} else if (truth_text != nullptr && truth_text[0] != '\0' &&
image_data->transcription_ != truth_text) {
// Save the truth text as it is present and disagrees with the box text.
image_data->transcription_ = truth_text;
}
return image_data;
}
// Writes to the given file. Returns false in case of error.
bool ImageData::Serialize(TFile *fp) const {
if (!fp->Serialize(imagefilename_)) {
return false;
}
if (!fp->Serialize(&page_number_)) {
return false;
}
if (!fp->Serialize(image_data_)) {
return false;
}
if (!fp->Serialize(language_)) {
return false;
}
if (!fp->Serialize(transcription_)) {
return false;
}
if (!fp->Serialize(boxes_)) {
return false;
}
if (!fp->Serialize(box_texts_)) {
return false;
}
int8_t vertical = vertical_text_;
return fp->Serialize(&vertical);
}
// Reads from the given file. Returns false in case of error.
bool ImageData::DeSerialize(TFile *fp) {
if (!fp->DeSerialize(imagefilename_)) {
return false;
}
if (!fp->DeSerialize(&page_number_)) {
return false;
}
if (!fp->DeSerialize(image_data_)) {
return false;
}
if (!fp->DeSerialize(language_)) {
return false;
}
if (!fp->DeSerialize(transcription_)) {
return false;
}
if (!fp->DeSerialize(boxes_)) {
return false;
}
if (!fp->DeSerialize(box_texts_)) {
return false;
}
int8_t vertical = 0;
if (!fp->DeSerialize(&vertical)) {
return false;
}
vertical_text_ = vertical != 0;
return true;
}
// As DeSerialize, but only seeks past the data - hence a static method.
bool ImageData::SkipDeSerialize(TFile *fp) {
if (!fp->DeSerializeSkip()) {
return false;
}
int32_t page_number;
if (!fp->DeSerialize(&page_number)) {
return false;
}
if (!fp->DeSerializeSkip()) {
return false;
}
if (!fp->DeSerializeSkip()) {
return false;
}
if (!fp->DeSerializeSkip()) {
return false;
}
if (!fp->DeSerializeSkip(sizeof(TBOX))) {
return false;
}
int32_t number;
if (!fp->DeSerialize(&number)) {
return false;
}
for (int i = 0; i < number; i++) {
if (!fp->DeSerializeSkip()) {
return false;
}
}
int8_t vertical = 0;
return fp->DeSerialize(&vertical);
}
// Saves the given Pix as a PNG-encoded string and destroys it.
// In case of missing PNG support in Leptonica use PNM format,
// which requires more memory.
void ImageData::SetPix(Image pix) {
#ifdef TESSERACT_IMAGEDATA_AS_PIX
internal_pix_ = pix;
#else
SetPixInternal(pix, &image_data_);
#endif
}
// Returns the Pix image for *this. Must be pixDestroyed after use.
Image ImageData::GetPix() const {
#ifdef TESSERACT_IMAGEDATA_AS_PIX
# ifdef GRAPHICS_DISABLED
/* The only caller of this is the scaling functions to prescale the
* source. Thus we can just return a new pointer to the same data. */
return internal_pix_.clone();
# else
/* pixCopy always does an actual copy, so the caller can modify the
* changed data. */
return internal_pix_.copy();
# endif
#else
return GetPixInternal(image_data_);
#endif
}
// Gets anything and everything with a non-nullptr pointer, prescaled to a
// given target_height (if 0, then the original image height), and aligned.
// Also returns (if not nullptr) the width and height of the scaled image.
// The return value is the scaled Pix, which must be pixDestroyed after use,
// and scale_factor (if not nullptr) is set to the scale factor that was applied
// to the image to achieve the target_height.
Image ImageData::PreScale(int target_height, int max_height,
float *scale_factor, int *scaled_width,
int *scaled_height, std::vector<TBOX> *boxes) const {
int input_width = 0;
int input_height = 0;
Image src_pix = GetPix();
ASSERT_HOST(src_pix != nullptr);
input_width = pixGetWidth(src_pix);
input_height = pixGetHeight(src_pix);
if (target_height == 0) {
target_height = std::min(input_height, max_height);
}
float im_factor = static_cast<float>(target_height) / input_height;
if (scaled_width != nullptr) {
*scaled_width = IntCastRounded(im_factor * input_width);
}
if (scaled_height != nullptr) {
*scaled_height = target_height;
}
// Get the scaled image.
Image pix = pixScale(src_pix, im_factor, im_factor);
if (pix == nullptr) {
tprintf("Scaling pix of size %d, %d by factor %g made null pix!!\n",
input_width, input_height, im_factor);
src_pix.destroy();
return nullptr;
}
if (scaled_width != nullptr) {
*scaled_width = pixGetWidth(pix);
}
if (scaled_height != nullptr) {
*scaled_height = pixGetHeight(pix);
}
src_pix.destroy();
if (boxes != nullptr) {
// Get the boxes.
boxes->clear();
for (auto box : boxes_) {
box.scale(im_factor);
boxes->push_back(box);
}
if (boxes->empty()) {
// Make a single box for the whole image.
TBOX box(0, 0, im_factor * input_width, target_height);
boxes->push_back(box);
}
}
if (scale_factor != nullptr) {
*scale_factor = im_factor;
}
return pix;
}
int ImageData::MemoryUsed() const {
return image_data_.size();
}
#ifndef GRAPHICS_DISABLED
// Draws the data in a new window.
void ImageData::Display() const {
const int kTextSize = 64;
// Draw the image.
Image pix = GetPix();
if (pix == nullptr) {
return;
}
int width = pixGetWidth(pix);
int height = pixGetHeight(pix);
auto *win = new ScrollView("Imagedata", 100, 100, 2 * (width + 2 * kTextSize),
2 * (height + 4 * kTextSize), width + 10,
height + 3 * kTextSize, true);
win->Draw(pix, 0, height - 1);
pix.destroy();
// Draw the boxes.
win->Pen(ScrollView::RED);
win->Brush(ScrollView::NONE);
int text_size = kTextSize;
if (!boxes_.empty() && boxes_[0].height() * 2 < text_size) {
text_size = boxes_[0].height() * 2;
}
win->TextAttributes("Arial", text_size, false, false, false);
if (!boxes_.empty()) {
for (unsigned b = 0; b < boxes_.size(); ++b) {
boxes_[b].plot(win);
win->Text(boxes_[b].left(), height + kTextSize, box_texts_[b].c_str());
}
} else {
// The full transcription.
win->Pen(ScrollView::CYAN);
win->Text(0, height + kTextSize * 2, transcription_.c_str());
}
win->Update();
win->Wait();
}
#endif
// Adds the supplied boxes and transcriptions that correspond to the correct
// page number.
void ImageData::AddBoxes(const std::vector<TBOX> &boxes,
const std::vector<std::string> &texts,
const std::vector<int> &box_pages) {
// Copy the boxes and make the transcription.
for (unsigned i = 0; i < box_pages.size(); ++i) {
if (page_number_ >= 0 && box_pages[i] != page_number_) {
continue;
}
transcription_ += texts[i];
boxes_.push_back(boxes[i]);
box_texts_.push_back(texts[i]);
}
}
#ifndef TESSERACT_IMAGEDATA_AS_PIX
// Saves the given Pix as a PNG-encoded string and destroys it.
// In case of missing PNG support in Leptonica use PNM format,
// which requires more memory.
void ImageData::SetPixInternal(Image pix, std::vector<char> *image_data) {
l_uint8 *data;
size_t size;
l_int32 ret;
ret = pixWriteMem(&data, &size, pix, IFF_PNG);
if (ret) {
ret = pixWriteMem(&data, &size, pix, IFF_PNM);
}
pix.destroy();
// TODO: optimize resize (no init).
image_data->resize(size);
memcpy(&(*image_data)[0], data, size);
lept_free(data);
}
// Returns the Pix image for the image_data. Must be pixDestroyed after use.
Image ImageData::GetPixInternal(const std::vector<char> &image_data) {
Image pix = nullptr;
if (!image_data.empty()) {
// Convert the array to an image.
const auto *u_data =
reinterpret_cast<const unsigned char *>(&image_data[0]);
pix = pixReadMem(u_data, image_data.size());
}
return pix;
}
#endif
// Parses the text string as a box file and adds any discovered boxes that
// match the page number. Returns false on error.
bool ImageData::AddBoxes(const char *box_text) {
if (box_text != nullptr && box_text[0] != '\0') {
std::vector<TBOX> boxes;
std::vector<std::string> texts;
std::vector<int> box_pages;
if (ReadMemBoxes(page_number_, /*skip_blanks*/ false, box_text,
/*continue_on_failure*/ true, &boxes, &texts, nullptr,
&box_pages)) {
AddBoxes(boxes, texts, box_pages);
return true;
} else {
tprintf("Error: No boxes for page %d from image %s!\n", page_number_,
imagefilename_.c_str());
}
}
return false;
}
DocumentData::DocumentData(const std::string &name)
: document_name_(name),
pages_offset_(-1),
total_pages_(-1),
memory_used_(0),
max_memory_(0),
reader_(nullptr) {}
DocumentData::~DocumentData() {
if (thread.joinable()) {
thread.join();
}
std::lock_guard<std::mutex> lock_p(pages_mutex_);
std::lock_guard<std::mutex> lock_g(general_mutex_);
for (auto data : pages_) {
delete data;
}
}
// Reads all the pages in the given lstmf filename to the cache. The reader
// is used to read the file.
bool DocumentData::LoadDocument(const char *filename, int start_page,
int64_t max_memory, FileReader reader) {
SetDocument(filename, max_memory, reader);
pages_offset_ = start_page;
return ReCachePages();
}
// Sets up the document, without actually loading it.
void DocumentData::SetDocument(const char *filename, int64_t max_memory,
FileReader reader) {
std::lock_guard<std::mutex> lock_p(pages_mutex_);
std::lock_guard<std::mutex> lock(general_mutex_);
document_name_ = filename;
pages_offset_ = -1;
max_memory_ = max_memory;
reader_ = reader;
}
// Writes all the pages to the given filename. Returns false on error.
bool DocumentData::SaveDocument(const char *filename, FileWriter writer) {
std::lock_guard<std::mutex> lock(pages_mutex_);
TFile fp;
fp.OpenWrite(nullptr);
if (!fp.Serialize(pages_) || !fp.CloseWrite(filename, writer)) {
tprintf("Serialize failed: %s\n", filename);
return false;
}
return true;
}
// Adds the given page data to this document, counting up memory.
void DocumentData::AddPageToDocument(ImageData *page) {
std::lock_guard<std::mutex> lock(pages_mutex_);
pages_.push_back(page);
set_memory_used(memory_used() + page->MemoryUsed());
}
// If the given index is not currently loaded, loads it using a separate
// thread.
void DocumentData::LoadPageInBackground(int index) {
ImageData *page = nullptr;
if (IsPageAvailable(index, &page)) {
return;
}
{
std::lock_guard<std::mutex> lock(pages_mutex_);
if (pages_offset_ == index) {
return;
}
pages_offset_ = index;
for (auto page : pages_) {
delete page;
}
pages_.clear();
}
if (thread.joinable()) {
thread.join();
}
// Don't run next statement asynchronously because that would
// create too many threads on Linux (see issue #3111).
ReCachePages();
}
// Returns a pointer to the page with the given index, modulo the total
// number of pages. Blocks until the background load is completed.
const ImageData *DocumentData::GetPage(int index) {
ImageData *page = nullptr;
while (!IsPageAvailable(index, &page)) {
// If there is no background load scheduled, schedule one now.
pages_mutex_.lock();
bool needs_loading = pages_offset_ != index;
pages_mutex_.unlock();
if (needs_loading) {
LoadPageInBackground(index);
}
// We can't directly load the page, or the background load will delete it
// while the caller is using it, so give it a chance to work.
std::this_thread::yield();
}
return page;
}
// Returns true if the requested page is available, and provides a pointer,
// which may be nullptr if the document is empty. May block, even though it
// doesn't guarantee to return true.
bool DocumentData::IsPageAvailable(int index, ImageData **page) {
std::lock_guard<std::mutex> lock(pages_mutex_);
int num_pages = NumPages();
if (num_pages == 0 || index < 0) {
*page = nullptr; // Empty Document.
return true;
}
if (num_pages > 0) {
index = Modulo(index, num_pages);
if (pages_offset_ <= index &&
static_cast<unsigned>(index) < pages_offset_ + pages_.size()) {
*page = pages_[index - pages_offset_]; // Page is available already.
return true;
}
}
return false;
}
// Removes all pages from memory and frees the memory, but does not forget
// the document metadata.
int64_t DocumentData::UnCache() {
std::lock_guard<std::mutex> lock(pages_mutex_);
int64_t memory_saved = memory_used();
for (auto page : pages_) {
delete page;
}
pages_.clear();
pages_offset_ = -1;
set_total_pages(-1);
set_memory_used(0);
tprintf("Unloaded document %s, saving %" PRId64 " memory\n",
document_name_.c_str(), memory_saved);
return memory_saved;
}
// Shuffles all the pages in the document.
void DocumentData::Shuffle() {
TRand random;
// Different documents get shuffled differently, but the same for the same
// name.
random.set_seed(document_name_.c_str());
int num_pages = pages_.size();
// Execute one random swap for each page in the document.
for (int i = 0; i < num_pages; ++i) {
int src = random.IntRand() % num_pages;
int dest = random.IntRand() % num_pages;
std::swap(pages_[src], pages_[dest]);
}
}
// Locks the pages_mutex_ and Loads as many pages can fit in max_memory_
// starting at index pages_offset_.
bool DocumentData::ReCachePages() {
std::lock_guard<std::mutex> lock(pages_mutex_);
// Read the file.
set_total_pages(0);
set_memory_used(0);
int loaded_pages = 0;
for (auto page : pages_) {
delete page;
}
pages_.clear();
TFile fp;
if (!fp.Open(document_name_.c_str(), reader_) ||
!fp.DeSerializeSize(&loaded_pages) || loaded_pages <= 0) {
tprintf("Deserialize header failed: %s\n", document_name_.c_str());
return false;
}
pages_offset_ %= loaded_pages;
// Skip pages before the first one we want, and load the rest until max
// memory and skip the rest after that.
int page;
for (page = 0; page < loaded_pages; ++page) {
uint8_t non_null;
if (!fp.DeSerialize(&non_null)) {
break;
}
if (page < pages_offset_ ||
(max_memory_ > 0 && memory_used() > max_memory_)) {
if (non_null && !ImageData::SkipDeSerialize(&fp)) {
break;
}
} else {
ImageData *image_data = nullptr;
if (non_null) {
image_data = new ImageData;
if (!image_data->DeSerialize(&fp)) {
delete image_data;
break;
}
}
pages_.push_back(image_data);
if (image_data->imagefilename().empty()) {
image_data->set_imagefilename(document_name_);
image_data->set_page_number(page);
}
set_memory_used(memory_used() + image_data->MemoryUsed());
}
}
if (page < loaded_pages) {
tprintf("Deserialize failed: %s read %d/%d lines\n", document_name_.c_str(),
page, loaded_pages);
for (auto page : pages_) {
delete page;
}
pages_.clear();
} else if (loaded_pages > 1) {
// Avoid lots of messages for training with single line images.
tprintf("Loaded %zu/%d lines (%d-%zu) of document %s\n", pages_.size(),
loaded_pages, pages_offset_ + 1, pages_offset_ + pages_.size(),
document_name_.c_str());
}
set_total_pages(loaded_pages);
return !pages_.empty();
}
// A collection of DocumentData that knows roughly how much memory it is using.
DocumentCache::DocumentCache(int64_t max_memory) : max_memory_(max_memory) {}
DocumentCache::~DocumentCache() {
for (auto *document : documents_) {
delete document;
}
}
// Adds all the documents in the list of filenames, counting memory.
// The reader is used to read the files.
bool DocumentCache::LoadDocuments(const std::vector<std::string> &filenames,
CachingStrategy cache_strategy,
FileReader reader) {
cache_strategy_ = cache_strategy;
int64_t fair_share_memory = 0;
// In the round-robin case, each DocumentData handles restricting its content
// to its fair share of memory. In the sequential case, DocumentCache
// determines which DocumentDatas are held entirely in memory.
if (cache_strategy_ == CS_ROUND_ROBIN) {
fair_share_memory = max_memory_ / filenames.size();
}
for (const auto &filename : filenames) {
auto *document = new DocumentData(filename);
document->SetDocument(filename.c_str(), fair_share_memory, reader);
AddToCache(document);
}
if (!documents_.empty()) {
// Try to get the first page now to verify the list of filenames.
if (GetPageBySerial(0) != nullptr) {
return true;
}
tprintf("Load of page 0 failed!\n");
}
return false;
}
// Adds document to the cache.
bool DocumentCache::AddToCache(DocumentData *data) {
documents_.push_back(data);
return true;
}
// Finds and returns a document by name.
DocumentData *DocumentCache::FindDocument(
const std::string &document_name) const {
for (auto *document : documents_) {
if (document->document_name() == document_name) {
return document;
}
}
return nullptr;
}
// Returns the total number of pages in an epoch. For CS_ROUND_ROBIN cache
// strategy, could take a long time.
int DocumentCache::TotalPages() {
if (cache_strategy_ == CS_SEQUENTIAL) {
// In sequential mode, we assume each doc has the same number of pages
// whether it is true or not.
if (num_pages_per_doc_ == 0) {
GetPageSequential(0);
}
return num_pages_per_doc_ * documents_.size();
}
int total_pages = 0;
for (auto *document : documents_) {
// We have to load a page to make NumPages() valid.
document->GetPage(0);
total_pages += document->NumPages();
}
return total_pages;
}
// Returns a page by serial number, selecting them in a round-robin fashion
// from all the documents. Highly disk-intensive, but doesn't need samples
// to be shuffled between files to begin with.
const ImageData *DocumentCache::GetPageRoundRobin(int serial) {
int num_docs = documents_.size();
int doc_index = serial % num_docs;
const ImageData *doc = documents_[doc_index]->GetPage(serial / num_docs);
for (int offset = 1; offset <= kMaxReadAhead && offset < num_docs; ++offset) {
doc_index = (serial + offset) % num_docs;
int page = (serial + offset) / num_docs;
documents_[doc_index]->LoadPageInBackground(page);
}
return doc;
}
// Returns a page by serial number, selecting them in sequence from each file.
// Requires the samples to be shuffled between the files to give a random or
// uniform distribution of data. Less disk-intensive than GetPageRoundRobin.
const ImageData *DocumentCache::GetPageSequential(int serial) {
int num_docs = documents_.size();
ASSERT_HOST(num_docs > 0);
if (num_pages_per_doc_ == 0) {
// Use the pages in the first doc as the number of pages in each doc.
documents_[0]->GetPage(0);
num_pages_per_doc_ = documents_[0]->NumPages();
if (num_pages_per_doc_ == 0) {
tprintf("First document cannot be empty!!\n");
ASSERT_HOST(num_pages_per_doc_ > 0);
}
// Get rid of zero now if we don't need it.
if (serial / num_pages_per_doc_ % num_docs > 0) {
documents_[0]->UnCache();
}
}
int doc_index = serial / num_pages_per_doc_ % num_docs;
const ImageData *doc =
documents_[doc_index]->GetPage(serial % num_pages_per_doc_);
// Count up total memory. Background loading makes it more complicated to
// keep a running count.
int64_t total_memory = 0;
for (auto *document : documents_) {
total_memory += document->memory_used();
}
if (total_memory >= max_memory_) {
// Find something to un-cache.
// If there are more than 3 in front, then serial is from the back reader
// of a pair of readers. If we un-cache from in-front-2 to 2-ahead, then
// we create a hole between them and then un-caching the backmost occupied
// will work for both.
int num_in_front = CountNeighbourDocs(doc_index, 1);
for (int offset = num_in_front - 2;
offset > 1 && total_memory >= max_memory_; --offset) {
int next_index = (doc_index + offset) % num_docs;
total_memory -= documents_[next_index]->UnCache();
}
// If that didn't work, the best solution is to un-cache from the back. If
// we take away the document that a 2nd reader is using, it will put it
// back and make a hole between.
int num_behind = CountNeighbourDocs(doc_index, -1);
for (int offset = num_behind; offset < 0 && total_memory >= max_memory_;
++offset) {
int next_index = (doc_index + offset + num_docs) % num_docs;
total_memory -= documents_[next_index]->UnCache();
}
}
int next_index = (doc_index + 1) % num_docs;
if (!documents_[next_index]->IsCached() && total_memory < max_memory_) {
documents_[next_index]->LoadPageInBackground(0);
}
return doc;
}
// Helper counts the number of adjacent cached neighbours of index looking in
// direction dir, ie index+dir, index+2*dir etc.
int DocumentCache::CountNeighbourDocs(int index, int dir) {
int num_docs = documents_.size();
for (int offset = dir; abs(offset) < num_docs; offset += dir) {
int offset_index = (index + offset + num_docs) % num_docs;
if (!documents_[offset_index]->IsCached()) {
return offset - dir;
}
}
return num_docs;
}
} // namespace tesseract.