tesseract/dict/trie.cpp

732 lines
27 KiB
C++

/* -*-C-*-
********************************************************************************
*
* File: trie.cpp (Formerly trie.c)
* Description: Functions to build a trie data structure.
* Author: Mark Seaman, OCR Technology
* Created: Fri Oct 16 14:37:00 1987
* Modified: Fri Jul 26 12:18:10 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Reusable Software Component
*
* (c) Copyright 1987, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
*********************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
----------------------------------------------------------------------*/
#ifdef _MSC_VER
#pragma warning(disable:4244) // Conversion warnings
#pragma warning(disable:4800) // int/bool warnings
#endif
#include "trie.h"
#include "callcpp.h"
#include "dawg.h"
#include "dict.h"
#include "genericvector.h"
#include "helpers.h"
#include "kdpair.h"
namespace tesseract {
const char kDoNotReverse[] = "RRP_DO_NO_REVERSE";
const char kReverseIfHasRTL[] = "RRP_REVERSE_IF_HAS_RTL";
const char kForceReverse[] = "RRP_FORCE_REVERSE";
const char * const RTLReversePolicyNames[] = {
kDoNotReverse,
kReverseIfHasRTL,
kForceReverse
};
const char Trie::kAlphaPatternUnicode[] = "\u2000";
const char Trie::kDigitPatternUnicode[] = "\u2001";
const char Trie::kAlphanumPatternUnicode[] = "\u2002";
const char Trie::kPuncPatternUnicode[] = "\u2003";
const char Trie::kLowerPatternUnicode[] = "\u2004";
const char Trie::kUpperPatternUnicode[] = "\u2005";
const char *Trie::get_reverse_policy_name(RTLReversePolicy reverse_policy) {
return RTLReversePolicyNames[reverse_policy];
}
// Reset the Trie to empty.
void Trie::clear() {
nodes_.delete_data_pointers();
nodes_.clear();
root_back_freelist_.clear();
num_edges_ = 0;
new_dawg_node(); // Need to allocate node 0.
}
bool Trie::edge_char_of(NODE_REF node_ref, NODE_REF next_node,
int direction, bool word_end, UNICHAR_ID unichar_id,
EDGE_RECORD **edge_ptr, EDGE_INDEX *edge_index) const {
if (debug_level_ == 3) {
tprintf("edge_char_of() given node_ref " REFFORMAT " next_node " REFFORMAT
" direction %d word_end %d unichar_id %d, exploring node:\n",
node_ref, next_node, direction, word_end, unichar_id);
if (node_ref != NO_EDGE) {
print_node(node_ref, nodes_[node_ref]->forward_edges.size());
}
}
if (node_ref == NO_EDGE) return false;
assert(node_ref < nodes_.size());
EDGE_VECTOR &vec = (direction == FORWARD_EDGE) ?
nodes_[node_ref]->forward_edges : nodes_[node_ref]->backward_edges;
int vec_size = vec.size();
if (node_ref == 0 && direction == FORWARD_EDGE) { // binary search
EDGE_INDEX start = 0;
EDGE_INDEX end = vec_size - 1;
EDGE_INDEX k;
int compare;
while (start <= end) {
k = (start + end) >> 1; // (start + end) / 2
compare = given_greater_than_edge_rec(next_node, word_end,
unichar_id, vec[k]);
if (compare == 0) { // given == vec[k]
*edge_ptr = &(vec[k]);
*edge_index = k;
return true;
} else if (compare == 1) { // given > vec[k]
start = k + 1;
} else { // given < vec[k]
end = k - 1;
}
}
} else { // linear search
for (int i = 0; i < vec_size; ++i) {
EDGE_RECORD &edge_rec = vec[i];
if (edge_rec_match(next_node, word_end, unichar_id,
next_node_from_edge_rec(edge_rec),
end_of_word_from_edge_rec(edge_rec),
unichar_id_from_edge_rec(edge_rec))) {
*edge_ptr = &(edge_rec);
*edge_index = i;
return true;
}
}
}
return false; // not found
}
bool Trie::add_edge_linkage(NODE_REF node1, NODE_REF node2, bool marker_flag,
int direction, bool word_end,
UNICHAR_ID unichar_id) {
EDGE_VECTOR *vec = (direction == FORWARD_EDGE) ?
&(nodes_[node1]->forward_edges) : &(nodes_[node1]->backward_edges);
int search_index;
if (node1 == 0 && direction == FORWARD_EDGE) {
search_index = 0; // find the index to make the add sorted
while (search_index < vec->size() &&
given_greater_than_edge_rec(node2, word_end, unichar_id,
(*vec)[search_index]) == 1) {
search_index++;
}
} else {
search_index = vec->size(); // add is unsorted, so index does not matter
}
EDGE_RECORD edge_rec;
link_edge(&edge_rec, node2, marker_flag, direction, word_end, unichar_id);
if (node1 == 0 && direction == BACKWARD_EDGE &&
!root_back_freelist_.empty()) {
EDGE_INDEX edge_index = root_back_freelist_.pop_back();
(*vec)[edge_index] = edge_rec;
} else if (search_index < vec->size()) {
vec->insert(edge_rec, search_index);
} else {
vec->push_back(edge_rec);
}
if (debug_level_ > 1) {
tprintf("new edge in nodes_[" REFFORMAT "]: ", node1);
print_edge_rec(edge_rec);
tprintf("\n");
}
num_edges_++;
return true;
}
void Trie::add_word_ending(EDGE_RECORD *edge_ptr,
NODE_REF the_next_node,
bool marker_flag,
UNICHAR_ID unichar_id) {
EDGE_RECORD *back_edge_ptr;
EDGE_INDEX back_edge_index;
ASSERT_HOST(edge_char_of(the_next_node, NO_EDGE, BACKWARD_EDGE, false,
unichar_id, &back_edge_ptr, &back_edge_index));
if (marker_flag) {
*back_edge_ptr |= (MARKER_FLAG << flag_start_bit_);
*edge_ptr |= (MARKER_FLAG << flag_start_bit_);
}
// Mark both directions as end of word.
*back_edge_ptr |= (WERD_END_FLAG << flag_start_bit_);
*edge_ptr |= (WERD_END_FLAG << flag_start_bit_);
}
bool Trie::add_word_to_dawg(const WERD_CHOICE &word,
const GenericVector<bool> *repetitions) {
if (word.length() <= 0) return false; // can't add empty words
if (repetitions != NULL) ASSERT_HOST(repetitions->size() == word.length());
// Make sure the word does not contain invalid unchar ids.
for (int i = 0; i < word.length(); ++i) {
if (word.unichar_id(i) < 0 ||
word.unichar_id(i) >= unicharset_size_) return false;
}
EDGE_RECORD *edge_ptr;
NODE_REF last_node = 0;
NODE_REF the_next_node;
bool marker_flag = false;
EDGE_INDEX edge_index;
int i;
inT32 still_finding_chars = true;
inT32 word_end = false;
bool add_failed = false;
bool found;
if (debug_level_ > 1) word.print("\nAdding word: ");
UNICHAR_ID unichar_id;
for (i = 0; i < word.length() - 1; ++i) {
unichar_id = word.unichar_id(i);
marker_flag = (repetitions != NULL) ? (*repetitions)[i] : false;
if (debug_level_ > 1) tprintf("Adding letter %d\n", unichar_id);
if (still_finding_chars) {
found = edge_char_of(last_node, NO_EDGE, FORWARD_EDGE, word_end,
unichar_id, &edge_ptr, &edge_index);
if (found && debug_level_ > 1) {
tprintf("exploring edge " REFFORMAT " in node " REFFORMAT "\n",
edge_index, last_node);
}
if (!found) {
still_finding_chars = false;
} else if (next_node_from_edge_rec(*edge_ptr) == 0) {
// We hit the end of an existing word, but the new word is longer.
// In this case we have to disconnect the existing word from the
// backwards root node, mark the current position as end-of-word
// and add new nodes for the increased length. Disconnecting the
// existing word from the backwards root node requires a linear
// search, so it is much faster to add the longest words first,
// to avoid having to come here.
word_end = true;
still_finding_chars = false;
remove_edge(last_node, 0, word_end, unichar_id);
} else {
// We have to add a new branch here for the new word.
if (marker_flag) set_marker_flag_in_edge_rec(edge_ptr);
last_node = next_node_from_edge_rec(*edge_ptr);
}
}
if (!still_finding_chars) {
the_next_node = new_dawg_node();
if (debug_level_ > 1)
tprintf("adding node " REFFORMAT "\n", the_next_node);
if (the_next_node == 0) {
add_failed = true;
break;
}
if (!add_new_edge(last_node, the_next_node,
marker_flag, word_end, unichar_id)) {
add_failed = true;
break;
}
word_end = false;
last_node = the_next_node;
}
}
the_next_node = 0;
unichar_id = word.unichar_id(i);
marker_flag = (repetitions != NULL) ? (*repetitions)[i] : false;
if (debug_level_ > 1) tprintf("Adding letter %d\n", unichar_id);
if (still_finding_chars &&
edge_char_of(last_node, NO_EDGE, FORWARD_EDGE, false,
unichar_id, &edge_ptr, &edge_index)) {
// An extension of this word already exists in the trie, so we
// only have to add the ending flags in both directions.
add_word_ending(edge_ptr, next_node_from_edge_rec(*edge_ptr),
marker_flag, unichar_id);
} else {
// Add a link to node 0. All leaves connect to node 0 so the back links can
// be used in reduction to a dawg. This root backward node has one edge
// entry for every word, (except prefixes of longer words) so it is huge.
if (!add_failed &&
!add_new_edge(last_node, the_next_node, marker_flag, true, unichar_id))
add_failed = true;
}
if (add_failed) {
tprintf("Re-initializing document dictionary...\n");
clear();
return false;
} else {
return true;
}
}
NODE_REF Trie::new_dawg_node() {
TRIE_NODE_RECORD *node = new TRIE_NODE_RECORD();
nodes_.push_back(node);
return nodes_.length() - 1;
}
// Sort function to sort words by decreasing order of length.
static int sort_strings_by_dec_length(const void* v1, const void* v2) {
const STRING *s1 = static_cast<const STRING *>(v1);
const STRING *s2 = static_cast<const STRING *>(v2);
return s2->length() - s1->length();
}
bool Trie::read_and_add_word_list(const char *filename,
const UNICHARSET &unicharset,
Trie::RTLReversePolicy reverse_policy) {
GenericVector<STRING> word_list;
if (!read_word_list(filename, &word_list)) return false;
word_list.sort(sort_strings_by_dec_length);
return add_word_list(word_list, unicharset, reverse_policy);
}
bool Trie::read_word_list(const char *filename,
GenericVector<STRING>* words) {
FILE *word_file;
char line_str[CHARS_PER_LINE];
int word_count = 0;
word_file = fopen(filename, "rb");
if (word_file == NULL) return false;
while (fgets(line_str, sizeof(line_str), word_file) != NULL) {
chomp_string(line_str); // remove newline
STRING word_str(line_str);
++word_count;
if (debug_level_ && word_count % 10000 == 0)
tprintf("Read %d words so far\n", word_count);
words->push_back(word_str);
}
if (debug_level_)
tprintf("Read %d words total.\n", word_count);
fclose(word_file);
return true;
}
bool Trie::add_word_list(const GenericVector<STRING> &words,
const UNICHARSET &unicharset,
Trie::RTLReversePolicy reverse_policy) {
for (int i = 0; i < words.size(); ++i) {
WERD_CHOICE word(words[i].string(), unicharset);
if (word.length() == 0 || word.contains_unichar_id(INVALID_UNICHAR_ID))
continue;
if ((reverse_policy == RRP_REVERSE_IF_HAS_RTL &&
word.has_rtl_unichar_id()) ||
reverse_policy == RRP_FORCE_REVERSE) {
word.reverse_and_mirror_unichar_ids();
}
if (!word_in_dawg(word)) {
add_word_to_dawg(word);
if (!word_in_dawg(word)) {
tprintf("Error: word '%s' not in DAWG after adding it\n",
words[i].string());
return false;
}
}
}
return true;
}
void Trie::initialize_patterns(UNICHARSET *unicharset) {
unicharset->unichar_insert(kAlphaPatternUnicode);
alpha_pattern_ = unicharset->unichar_to_id(kAlphaPatternUnicode);
unicharset->unichar_insert(kDigitPatternUnicode);
digit_pattern_ = unicharset->unichar_to_id(kDigitPatternUnicode);
unicharset->unichar_insert(kAlphanumPatternUnicode);
alphanum_pattern_ = unicharset->unichar_to_id(kAlphanumPatternUnicode);
unicharset->unichar_insert(kPuncPatternUnicode);
punc_pattern_ = unicharset->unichar_to_id(kPuncPatternUnicode);
unicharset->unichar_insert(kLowerPatternUnicode);
lower_pattern_ = unicharset->unichar_to_id(kLowerPatternUnicode);
unicharset->unichar_insert(kUpperPatternUnicode);
upper_pattern_ = unicharset->unichar_to_id(kUpperPatternUnicode);
initialized_patterns_ = true;
unicharset_size_ = unicharset->size();
}
void Trie::unichar_id_to_patterns(UNICHAR_ID unichar_id,
const UNICHARSET &unicharset,
GenericVector<UNICHAR_ID> *vec) const {
bool is_alpha = unicharset.get_isalpha(unichar_id);
if (is_alpha) {
vec->push_back(alpha_pattern_);
vec->push_back(alphanum_pattern_);
if (unicharset.get_islower(unichar_id)) {
vec->push_back(lower_pattern_);
} else if (unicharset.get_isupper(unichar_id)) {
vec->push_back(upper_pattern_);
}
}
if (unicharset.get_isdigit(unichar_id)) {
vec->push_back(digit_pattern_);
if (!is_alpha) vec->push_back(alphanum_pattern_);
}
if (unicharset.get_ispunctuation(unichar_id)) {
vec->push_back(punc_pattern_);
}
}
UNICHAR_ID Trie::character_class_to_pattern(char ch) {
if (ch == 'c') {
return alpha_pattern_;
} else if (ch == 'd') {
return digit_pattern_;
} else if (ch == 'n') {
return alphanum_pattern_;
} else if (ch == 'p') {
return punc_pattern_;
} else if (ch == 'a') {
return lower_pattern_;
} else if (ch == 'A') {
return upper_pattern_;
} else {
return INVALID_UNICHAR_ID;
}
}
bool Trie::read_pattern_list(const char *filename,
const UNICHARSET &unicharset) {
if (!initialized_patterns_) {
tprintf("please call initialize_patterns() before read_pattern_list()\n");
return false;
}
FILE *pattern_file = fopen(filename, "rb");
if (pattern_file == NULL) {
tprintf("Error opening pattern file %s\n", filename);
return false;
}
int pattern_count = 0;
char string[CHARS_PER_LINE];
while (fgets(string, CHARS_PER_LINE, pattern_file) != NULL) {
chomp_string(string); // remove newline
// Parse the pattern and construct a unichar id vector.
// Record the number of repetitions of each unichar in the parallel vector.
WERD_CHOICE word(&unicharset);
GenericVector<bool> repetitions_vec;
const char *str_ptr = string;
int step = unicharset.step(str_ptr);
bool failed = false;
while (step > 0) {
UNICHAR_ID curr_unichar_id = INVALID_UNICHAR_ID;
if (step == 1 && *str_ptr == '\\') {
++str_ptr;
if (*str_ptr == '\\') { // regular '\' unichar that was escaped
curr_unichar_id = unicharset.unichar_to_id(str_ptr, step);
} else {
if (word.length() < kSaneNumConcreteChars) {
tprintf("Please provide at least %d concrete characters at the"
" beginning of the pattern\n", kSaneNumConcreteChars);
failed = true;
break;
}
// Parse character class from expression.
curr_unichar_id = character_class_to_pattern(*str_ptr);
}
} else {
curr_unichar_id = unicharset.unichar_to_id(str_ptr, step);
}
if (curr_unichar_id == INVALID_UNICHAR_ID) {
failed = true;
break; // failed to parse this pattern
}
word.append_unichar_id(curr_unichar_id, 1, 0.0, 0.0);
repetitions_vec.push_back(false);
str_ptr += step;
step = unicharset.step(str_ptr);
// Check if there is a repetition pattern specified after this unichar.
if (step == 1 && *str_ptr == '\\' && *(str_ptr+1) == '*') {
repetitions_vec[repetitions_vec.size()-1] = true;
str_ptr += 2;
step = unicharset.step(str_ptr);
}
}
if (failed) {
tprintf("Invalid user pattern %s\n", string);
continue;
}
// Insert the pattern into the trie.
if (debug_level_ > 2) {
tprintf("Inserting expanded user pattern %s\n",
word.debug_string().string());
}
if (!this->word_in_dawg(word)) {
this->add_word_to_dawg(word, &repetitions_vec);
if (!this->word_in_dawg(word)) {
tprintf("Error: failed to insert pattern '%s'\n", string);
}
}
++pattern_count;
}
if (debug_level_) {
tprintf("Read %d valid patterns from %s\n", pattern_count, filename);
}
fclose(pattern_file);
return true;
}
void Trie::remove_edge_linkage(NODE_REF node1, NODE_REF node2, int direction,
bool word_end, UNICHAR_ID unichar_id) {
EDGE_RECORD *edge_ptr = NULL;
EDGE_INDEX edge_index = 0;
ASSERT_HOST(edge_char_of(node1, node2, direction, word_end,
unichar_id, &edge_ptr, &edge_index));
if (debug_level_ > 1) {
tprintf("removed edge in nodes_[" REFFORMAT "]: ", node1);
print_edge_rec(*edge_ptr);
tprintf("\n");
}
if (direction == FORWARD_EDGE) {
nodes_[node1]->forward_edges.remove(edge_index);
} else if (node1 == 0) {
KillEdge(&nodes_[node1]->backward_edges[edge_index]);
root_back_freelist_.push_back(edge_index);
} else {
nodes_[node1]->backward_edges.remove(edge_index);
}
--num_edges_;
}
// Some optimizations employed in add_word_to_dawg and trie_to_dawg:
// 1 Avoid insertion sorting or bubble sorting the tail root node
// (back links on node 0, a list of all the leaves.). The node is
// huge, and sorting it with n^2 time is terrible.
// 2 Avoid using GenericVector::remove on the tail root node.
// (a) During add of words to the trie, zero-out the unichars and
// keep a freelist of spaces to re-use.
// (b) During reduction, just zero-out the unichars of deleted back
// links, skipping zero entries while searching.
// 3 Avoid linear search of the tail root node. This has to be done when
// a suffix is added to an existing word. Adding words by decreasing
// length avoids this problem entirely. Words can still be added in
// any order, but it is faster to add the longest first.
SquishedDawg *Trie::trie_to_dawg() {
root_back_freelist_.clear(); // Will be invalided by trie_to_dawg.
if (debug_level_ > 2) {
print_all("Before reduction:", MAX_NODE_EDGES_DISPLAY);
}
NODE_MARKER reduced_nodes = new bool[nodes_.size()];
for (int i = 0; i < nodes_.size(); i++) reduced_nodes[i] = 0;
this->reduce_node_input(0, reduced_nodes);
delete[] reduced_nodes;
if (debug_level_ > 2) {
print_all("After reduction:", MAX_NODE_EDGES_DISPLAY);
}
// Build a translation map from node indices in nodes_ vector to
// their target indices in EDGE_ARRAY.
NODE_REF *node_ref_map = new NODE_REF[nodes_.size() + 1];
int i, j;
node_ref_map[0] = 0;
for (i = 0; i < nodes_.size(); ++i) {
node_ref_map[i+1] = node_ref_map[i] + nodes_[i]->forward_edges.size();
}
int num_forward_edges = node_ref_map[i];
// Convert nodes_ vector into EDGE_ARRAY translating the next node references
// in edges using node_ref_map. Empty nodes and backward edges are dropped.
EDGE_ARRAY edge_array = new EDGE_RECORD[num_forward_edges];
EDGE_ARRAY edge_array_ptr = edge_array;
for (i = 0; i < nodes_.size(); ++i) {
TRIE_NODE_RECORD *node_ptr = nodes_[i];
int end = node_ptr->forward_edges.size();
for (j = 0; j < end; ++j) {
EDGE_RECORD &edge_rec = node_ptr->forward_edges[j];
NODE_REF node_ref = next_node_from_edge_rec(edge_rec);
ASSERT_HOST(node_ref < nodes_.size());
UNICHAR_ID unichar_id = unichar_id_from_edge_rec(edge_rec);
link_edge(edge_array_ptr, node_ref_map[node_ref], false, FORWARD_EDGE,
end_of_word_from_edge_rec(edge_rec), unichar_id);
if (j == end - 1) set_marker_flag_in_edge_rec(edge_array_ptr);
++edge_array_ptr;
}
}
delete[] node_ref_map;
return new SquishedDawg(edge_array, num_forward_edges, type_, lang_,
perm_, unicharset_size_, debug_level_);
}
bool Trie::eliminate_redundant_edges(NODE_REF node,
const EDGE_RECORD &edge1,
const EDGE_RECORD &edge2) {
if (debug_level_ > 1) {
tprintf("\nCollapsing node %" PRIi64 ":\n", node);
print_node(node, MAX_NODE_EDGES_DISPLAY);
tprintf("Candidate edges: ");
print_edge_rec(edge1);
tprintf(", ");
print_edge_rec(edge2);
tprintf("\n\n");
}
NODE_REF next_node1 = next_node_from_edge_rec(edge1);
NODE_REF next_node2 = next_node_from_edge_rec(edge2);
TRIE_NODE_RECORD *next_node2_ptr = nodes_[next_node2];
// Translate all edges going to/from next_node2 to go to/from next_node1.
EDGE_RECORD *edge_ptr = NULL;
EDGE_INDEX edge_index;
int i;
// The backward link in node to next_node2 will be zeroed out by the caller.
// Copy all the backward links in next_node2 to node next_node1
for (i = 0; i < next_node2_ptr->backward_edges.size(); ++i) {
const EDGE_RECORD &bkw_edge = next_node2_ptr->backward_edges[i];
NODE_REF curr_next_node = next_node_from_edge_rec(bkw_edge);
UNICHAR_ID curr_unichar_id = unichar_id_from_edge_rec(bkw_edge);
int curr_word_end = end_of_word_from_edge_rec(bkw_edge);
bool marker_flag = marker_flag_from_edge_rec(bkw_edge);
add_edge_linkage(next_node1, curr_next_node, marker_flag, BACKWARD_EDGE,
curr_word_end, curr_unichar_id);
// Relocate the corresponding forward edge in curr_next_node
ASSERT_HOST(edge_char_of(curr_next_node, next_node2, FORWARD_EDGE,
curr_word_end, curr_unichar_id,
&edge_ptr, &edge_index));
set_next_node_in_edge_rec(edge_ptr, next_node1);
}
int next_node2_num_edges = (next_node2_ptr->forward_edges.size() +
next_node2_ptr->backward_edges.size());
if (debug_level_ > 1) {
tprintf("removed %d edges from node " REFFORMAT "\n",
next_node2_num_edges, next_node2);
}
next_node2_ptr->forward_edges.clear();
next_node2_ptr->backward_edges.clear();
num_edges_ -= next_node2_num_edges;
return true;
}
bool Trie::reduce_lettered_edges(EDGE_INDEX edge_index,
UNICHAR_ID unichar_id,
NODE_REF node,
EDGE_VECTOR* backward_edges,
NODE_MARKER reduced_nodes) {
if (debug_level_ > 1)
tprintf("reduce_lettered_edges(edge=" REFFORMAT ")\n", edge_index);
// Compare each of the edge pairs with the given unichar_id.
bool did_something = false;
for (int i = edge_index; i < backward_edges->size() - 1; ++i) {
// Find the first edge that can be eliminated.
UNICHAR_ID curr_unichar_id = INVALID_UNICHAR_ID;
while (i < backward_edges->size()) {
if (!DeadEdge((*backward_edges)[i])) {
curr_unichar_id = unichar_id_from_edge_rec((*backward_edges)[i]);
if (curr_unichar_id != unichar_id) return did_something;
if (can_be_eliminated((*backward_edges)[i])) break;
}
++i;
}
if (i == backward_edges->size()) break;
const EDGE_RECORD &edge_rec = (*backward_edges)[i];
// Compare it to the rest of the edges with the given unichar_id.
for (int j = i + 1; j < backward_edges->size(); ++j) {
const EDGE_RECORD &next_edge_rec = (*backward_edges)[j];
if (DeadEdge(next_edge_rec)) continue;
UNICHAR_ID next_id = unichar_id_from_edge_rec(next_edge_rec);
if (next_id != unichar_id) break;
if (end_of_word_from_edge_rec(next_edge_rec) ==
end_of_word_from_edge_rec(edge_rec) &&
can_be_eliminated(next_edge_rec) &&
eliminate_redundant_edges(node, edge_rec, next_edge_rec)) {
reduced_nodes[next_node_from_edge_rec(edge_rec)] = 0;
did_something = true;
KillEdge(&(*backward_edges)[j]);
}
}
}
return did_something;
}
void Trie::sort_edges(EDGE_VECTOR *edges) {
int num_edges = edges->size();
if (num_edges <= 1) return;
GenericVector<KDPairInc<UNICHAR_ID, EDGE_RECORD> > sort_vec;
sort_vec.reserve(num_edges);
for (int i = 0; i < num_edges; ++i) {
sort_vec.push_back(KDPairInc<UNICHAR_ID, EDGE_RECORD>(
unichar_id_from_edge_rec((*edges)[i]), (*edges)[i]));
}
sort_vec.sort();
for (int i = 0; i < num_edges; ++i)
(*edges)[i] = sort_vec[i].data;
}
void Trie::reduce_node_input(NODE_REF node,
NODE_MARKER reduced_nodes) {
EDGE_VECTOR &backward_edges = nodes_[node]->backward_edges;
sort_edges(&backward_edges);
if (debug_level_ > 1) {
tprintf("reduce_node_input(node=" REFFORMAT ")\n", node);
print_node(node, MAX_NODE_EDGES_DISPLAY);
}
EDGE_INDEX edge_index = 0;
while (edge_index < backward_edges.size()) {
if (DeadEdge(backward_edges[edge_index])) continue;
UNICHAR_ID unichar_id =
unichar_id_from_edge_rec(backward_edges[edge_index]);
while (reduce_lettered_edges(edge_index, unichar_id, node,
&backward_edges, reduced_nodes));
while (++edge_index < backward_edges.size()) {
UNICHAR_ID id = unichar_id_from_edge_rec(backward_edges[edge_index]);
if (!DeadEdge(backward_edges[edge_index]) && id != unichar_id) break;
}
}
reduced_nodes[node] = true; // mark as reduced
if (debug_level_ > 1) {
tprintf("Node " REFFORMAT " after reduction:\n", node);
print_node(node, MAX_NODE_EDGES_DISPLAY);
}
for (int i = 0; i < backward_edges.size(); ++i) {
if (DeadEdge(backward_edges[i])) continue;
NODE_REF next_node = next_node_from_edge_rec(backward_edges[i]);
if (next_node != 0 && !reduced_nodes[next_node]) {
reduce_node_input(next_node, reduced_nodes);
}
}
}
void Trie::print_node(NODE_REF node, int max_num_edges) const {
if (node == NO_EDGE) return; // nothing to print
TRIE_NODE_RECORD *node_ptr = nodes_[node];
int num_fwd = node_ptr->forward_edges.size();
int num_bkw = node_ptr->backward_edges.size();
EDGE_VECTOR *vec;
for (int dir = 0; dir < 2; ++dir) {
if (dir == 0) {
vec = &(node_ptr->forward_edges);
tprintf(REFFORMAT " (%d %d): ", node, num_fwd, num_bkw);
} else {
vec = &(node_ptr->backward_edges);
tprintf("\t");
}
int i;
for (i = 0; (dir == 0 ? i < num_fwd : i < num_bkw) &&
i < max_num_edges; ++i) {
if (DeadEdge((*vec)[i])) continue;
print_edge_rec((*vec)[i]);
tprintf(" ");
}
if (dir == 0 ? i < num_fwd : i < num_bkw) tprintf("...");
tprintf("\n");
}
}
} // namespace tesseract