tesseract/classify/intfeaturemap.cpp
Stefan Weil 5bce3f7d87 classify: Remove unused constant kMinPCLengthIncrease
This fixes a compiler warning:

classify/intfeaturemap.cpp:33:14: warning:
 unused variable 'kMinPCLengthIncrease' [-Wunused-const-variable]

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2016-09-06 21:49:16 +02:00

245 lines
9.1 KiB
C++

// Copyright 2010 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
///////////////////////////////////////////////////////////////////////
// File: intfeaturemap.cpp
// Description: Encapsulation of IntFeatureSpace with IndexMapBiDi
// to provide a subspace mapping and fast feature lookup.
// Created: Tue Oct 26 08:58:30 PDT 2010
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "intfeaturemap.h"
#include "intfeaturespace.h"
#include "intfx.h"
// These includes do not exist yet, but will be coming soon.
//#include "sampleiterator.h"
//#include "trainingsample.h"
//#include "trainingsampleset.h"
namespace tesseract {
const int kMaxOffsetDist = 32;
IntFeatureMap::IntFeatureMap()
: mapping_changed_(true), compact_size_(0) {
for (int dir = 0; dir < kNumOffsetMaps; ++dir) {
offset_plus_[dir] = NULL;
offset_minus_[dir] = NULL;
}
}
IntFeatureMap::~IntFeatureMap() {
Clear();
}
// Pseudo-accessors.
int IntFeatureMap::IndexFeature(const INT_FEATURE_STRUCT& f) const {
return feature_space_.Index(f);
}
int IntFeatureMap::MapFeature(const INT_FEATURE_STRUCT& f) const {
return feature_map_.SparseToCompact(feature_space_.Index(f));
}
int IntFeatureMap::MapIndexFeature(int index_feature) const {
return feature_map_.SparseToCompact(index_feature);
}
INT_FEATURE_STRUCT IntFeatureMap::InverseIndexFeature(int index_feature) const {
return feature_space_.PositionFromIndex(index_feature);
}
INT_FEATURE_STRUCT IntFeatureMap::InverseMapFeature(int map_feature) const {
int index = feature_map_.CompactToSparse(map_feature);
return feature_space_.PositionFromIndex(index);
}
void IntFeatureMap::DeleteMapFeature(int map_feature) {
feature_map_.Merge(-1, map_feature);
mapping_changed_ = true;
}
bool IntFeatureMap::IsMapFeatureDeleted(int map_feature) const {
return feature_map_.IsCompactDeleted(map_feature);
}
// Copies the given feature_space and uses it as the index feature map
// from INT_FEATURE_STRUCT.
void IntFeatureMap::Init(const IntFeatureSpace& feature_space) {
feature_space_ = feature_space;
mapping_changed_ = false;
int sparse_size = feature_space_.Size();
feature_map_.Init(sparse_size, true);
feature_map_.Setup();
compact_size_ = feature_map_.CompactSize();
// Initialize look-up tables if needed.
FCOORD dir = FeatureDirection(0);
if (dir.x() == 0.0f && dir.y() == 0.0f)
InitIntegerFX();
// Compute look-up tables to generate offset features.
for (int dir = 0; dir < kNumOffsetMaps; ++dir) {
delete [] offset_plus_[dir];
delete [] offset_minus_[dir];
offset_plus_[dir] = new int[sparse_size];
offset_minus_[dir] = new int[sparse_size];
}
for (int dir = 1; dir <= kNumOffsetMaps; ++dir) {
for (int i = 0; i < sparse_size; ++i) {
int offset_index = ComputeOffsetFeature(i, dir);
offset_plus_[dir - 1][i] = offset_index;
offset_index = ComputeOffsetFeature(i, -dir);
offset_minus_[dir - 1][i] = offset_index;
}
}
}
// Helper to return an offset index feature. In this context an offset
// feature with a dir of +/-1 is a feature of a similar direction,
// but shifted perpendicular to the direction of the feature. An offset
// feature with a dir of +/-2 is feature at the same position, but rotated
// by +/- one [compact] quantum. Returns the index of the generated offset
// feature, or -1 if it doesn't exist. Dir should be in
// [-kNumOffsetMaps, kNumOffsetMaps] to indicate the relative direction.
// A dir of 0 is an identity transformation.
// Both input and output are from the index(sparse) feature space, not
// the mapped/compact feature space, but the offset feature is the minimum
// distance moved from the input to guarantee that it maps to the next
// available quantum in the mapped/compact space.
int IntFeatureMap::OffsetFeature(int index_feature, int dir) const {
if (dir > 0 && dir <= kNumOffsetMaps)
return offset_plus_[dir - 1][index_feature];
else if (dir < 0 && -dir <= kNumOffsetMaps)
return offset_minus_[-dir - 1][index_feature];
else if (dir == 0)
return index_feature;
else
return -1;
}
//#define EXPERIMENT_ON
#ifdef EXPERIMENT_ON // This code is commented out as SampleIterator and
// TrainingSample are not reviewed/checked in yet, but these functions are a
// useful indicator of how an IntFeatureMap is setup.
// Computes the features used by the subset of samples defined by
// the iterator and sets up the feature mapping.
// Returns the size of the compacted feature space.
int IntFeatureMap::FindNZFeatureMapping(SampleIterator* it) {
feature_map_.Init(feature_space_.Size(), false);
int total_samples = 0;
for (it->Begin(); !it->AtEnd(); it->Next()) {
const TrainingSample& sample = it->GetSample();
GenericVector<int> features;
feature_space_.IndexAndSortFeatures(sample.features(),
sample.num_features(),
&features);
int num_features = features.size();
for (int f = 0; f < num_features; ++f)
feature_map_.SetMap(features[f], true);
++total_samples;
}
feature_map_.Setup();
compact_size_ = feature_map_.CompactSize();
mapping_changed_ = true;
FinalizeMapping(it);
tprintf("%d non-zero features found in %d samples\n",
compact_size_, total_samples);
return compact_size_;
}
#endif
// After deleting some features, finish setting up the mapping, and map
// all the samples. Returns the size of the compacted feature space.
int IntFeatureMap::FinalizeMapping(SampleIterator* it) {
if (mapping_changed_) {
feature_map_.CompleteMerges();
compact_size_ = feature_map_.CompactSize();
#ifdef EXPERIMENT_ON
it->MapSampleFeatures(*this);
#endif
mapping_changed_ = false;
}
return compact_size_;
}
// Prints the map features from the set in human-readable form.
void IntFeatureMap::DebugMapFeatures(
const GenericVector<int>& map_features) const {
for (int i = 0; i < map_features.size(); ++i) {
INT_FEATURE_STRUCT f = InverseMapFeature(map_features[i]);
f.print();
}
}
void IntFeatureMap::Clear() {
for (int dir = 0; dir < kNumOffsetMaps; ++dir) {
delete [] offset_plus_[dir];
delete [] offset_minus_[dir];
offset_plus_[dir] = NULL;
offset_minus_[dir] = NULL;
}
}
// Helper to compute an offset index feature. In this context an offset
// feature with a dir of +/-1 is a feature of a similar direction,
// but shifted perpendicular to the direction of the feature. An offset
// feature with a dir of +/-2 is feature at the same position, but rotated
// by +/- one [compact] quantum. Returns the index of the generated offset
// feature, or -1 if it doesn't exist. Dir should be in
// [-kNumOffsetMaps, kNumOffsetMaps] to indicate the relative direction.
// A dir of 0 is an identity transformation.
// Both input and output are from the index(sparse) feature space, not
// the mapped/compact feature space, but the offset feature is the minimum
// distance moved from the input to guarantee that it maps to the next
// available quantum in the mapped/compact space.
int IntFeatureMap::ComputeOffsetFeature(int index_feature, int dir) const {
INT_FEATURE_STRUCT f = InverseIndexFeature(index_feature);
ASSERT_HOST(IndexFeature(f) == index_feature);
if (dir == 0) {
return index_feature;
} else if (dir == 1 || dir == -1) {
FCOORD feature_dir = FeatureDirection(f.Theta);
FCOORD rotation90(0.0f, 1.0f);
feature_dir.rotate(rotation90);
// Find the nearest existing feature.
for (int m = 1; m < kMaxOffsetDist; ++m) {
double x_pos = f.X + feature_dir.x() * (m * dir);
double y_pos = f.Y + feature_dir.y() * (m * dir);
int x = IntCastRounded(x_pos);
int y = IntCastRounded(y_pos);
if (x >= 0 && x <= MAX_UINT8 && y >= 0 && y <= MAX_UINT8) {
INT_FEATURE_STRUCT offset_f;
offset_f.X = x;
offset_f.Y = y;
offset_f.Theta = f.Theta;
int offset_index = IndexFeature(offset_f);
if (offset_index != index_feature && offset_index >= 0)
return offset_index; // Found one.
} else {
return -1; // Hit the edge of feature space.
}
}
} else if (dir == 2 || dir == -2) {
// Find the nearest existing index_feature.
for (int m = 1; m < kMaxOffsetDist; ++m) {
int theta = f.Theta + m * dir / 2;
INT_FEATURE_STRUCT offset_f;
offset_f.X = f.X;
offset_f.Y = f.Y;
offset_f.Theta = Modulo(theta, 256);
int offset_index = IndexFeature(offset_f);
if (offset_index != index_feature && offset_index >= 0)
return offset_index; // Found one.
}
}
return -1; // Nothing within the max distance.
}
} // namespace tesseract.